Step |
Hyp |
Ref |
Expression |
1 |
|
supinf.1 |
⊢ ( 𝜑 → < Or 𝐴 ) |
2 |
|
supinf.2 |
⊢ ( 𝜑 → ∃ 𝑥 ∈ 𝐴 ( ∀ 𝑦 ∈ 𝐵 ¬ 𝑥 < 𝑦 ∧ ∀ 𝑦 ∈ 𝐴 ( 𝑦 < 𝑥 → ∃ 𝑧 ∈ 𝐵 𝑦 < 𝑧 ) ) ) |
3 |
1 2
|
supcl |
⊢ ( 𝜑 → sup ( 𝐵 , 𝐴 , < ) ∈ 𝐴 ) |
4 |
|
breq1 |
⊢ ( 𝑥 = sup ( 𝐵 , 𝐴 , < ) → ( 𝑥 < 𝑤 ↔ sup ( 𝐵 , 𝐴 , < ) < 𝑤 ) ) |
5 |
4
|
notbid |
⊢ ( 𝑥 = sup ( 𝐵 , 𝐴 , < ) → ( ¬ 𝑥 < 𝑤 ↔ ¬ sup ( 𝐵 , 𝐴 , < ) < 𝑤 ) ) |
6 |
5
|
ralbidv |
⊢ ( 𝑥 = sup ( 𝐵 , 𝐴 , < ) → ( ∀ 𝑤 ∈ 𝐵 ¬ 𝑥 < 𝑤 ↔ ∀ 𝑤 ∈ 𝐵 ¬ sup ( 𝐵 , 𝐴 , < ) < 𝑤 ) ) |
7 |
1 2
|
supub |
⊢ ( 𝜑 → ( 𝑣 ∈ 𝐵 → ¬ sup ( 𝐵 , 𝐴 , < ) < 𝑣 ) ) |
8 |
7
|
ralrimiv |
⊢ ( 𝜑 → ∀ 𝑣 ∈ 𝐵 ¬ sup ( 𝐵 , 𝐴 , < ) < 𝑣 ) |
9 |
|
breq2 |
⊢ ( 𝑣 = 𝑤 → ( sup ( 𝐵 , 𝐴 , < ) < 𝑣 ↔ sup ( 𝐵 , 𝐴 , < ) < 𝑤 ) ) |
10 |
9
|
notbid |
⊢ ( 𝑣 = 𝑤 → ( ¬ sup ( 𝐵 , 𝐴 , < ) < 𝑣 ↔ ¬ sup ( 𝐵 , 𝐴 , < ) < 𝑤 ) ) |
11 |
10
|
cbvralvw |
⊢ ( ∀ 𝑣 ∈ 𝐵 ¬ sup ( 𝐵 , 𝐴 , < ) < 𝑣 ↔ ∀ 𝑤 ∈ 𝐵 ¬ sup ( 𝐵 , 𝐴 , < ) < 𝑤 ) |
12 |
8 11
|
sylib |
⊢ ( 𝜑 → ∀ 𝑤 ∈ 𝐵 ¬ sup ( 𝐵 , 𝐴 , < ) < 𝑤 ) |
13 |
6 3 12
|
elrabd |
⊢ ( 𝜑 → sup ( 𝐵 , 𝐴 , < ) ∈ { 𝑥 ∈ 𝐴 ∣ ∀ 𝑤 ∈ 𝐵 ¬ 𝑥 < 𝑤 } ) |
14 |
|
breq1 |
⊢ ( 𝑥 = 𝑣 → ( 𝑥 < 𝑤 ↔ 𝑣 < 𝑤 ) ) |
15 |
14
|
notbid |
⊢ ( 𝑥 = 𝑣 → ( ¬ 𝑥 < 𝑤 ↔ ¬ 𝑣 < 𝑤 ) ) |
16 |
15
|
ralbidv |
⊢ ( 𝑥 = 𝑣 → ( ∀ 𝑤 ∈ 𝐵 ¬ 𝑥 < 𝑤 ↔ ∀ 𝑤 ∈ 𝐵 ¬ 𝑣 < 𝑤 ) ) |
17 |
16
|
elrab |
⊢ ( 𝑣 ∈ { 𝑥 ∈ 𝐴 ∣ ∀ 𝑤 ∈ 𝐵 ¬ 𝑥 < 𝑤 } ↔ ( 𝑣 ∈ 𝐴 ∧ ∀ 𝑤 ∈ 𝐵 ¬ 𝑣 < 𝑤 ) ) |
18 |
|
breq2 |
⊢ ( 𝑧 = 𝑤 → ( 𝑦 < 𝑧 ↔ 𝑦 < 𝑤 ) ) |
19 |
18
|
cbvrexvw |
⊢ ( ∃ 𝑧 ∈ 𝐵 𝑦 < 𝑧 ↔ ∃ 𝑤 ∈ 𝐵 𝑦 < 𝑤 ) |
20 |
19
|
imbi2i |
⊢ ( ( 𝑦 < 𝑥 → ∃ 𝑧 ∈ 𝐵 𝑦 < 𝑧 ) ↔ ( 𝑦 < 𝑥 → ∃ 𝑤 ∈ 𝐵 𝑦 < 𝑤 ) ) |
21 |
20
|
ralbii |
⊢ ( ∀ 𝑦 ∈ 𝐴 ( 𝑦 < 𝑥 → ∃ 𝑧 ∈ 𝐵 𝑦 < 𝑧 ) ↔ ∀ 𝑦 ∈ 𝐴 ( 𝑦 < 𝑥 → ∃ 𝑤 ∈ 𝐵 𝑦 < 𝑤 ) ) |
22 |
21
|
anbi2i |
⊢ ( ( ∀ 𝑦 ∈ 𝐵 ¬ 𝑥 < 𝑦 ∧ ∀ 𝑦 ∈ 𝐴 ( 𝑦 < 𝑥 → ∃ 𝑧 ∈ 𝐵 𝑦 < 𝑧 ) ) ↔ ( ∀ 𝑦 ∈ 𝐵 ¬ 𝑥 < 𝑦 ∧ ∀ 𝑦 ∈ 𝐴 ( 𝑦 < 𝑥 → ∃ 𝑤 ∈ 𝐵 𝑦 < 𝑤 ) ) ) |
23 |
22
|
rexbii |
⊢ ( ∃ 𝑥 ∈ 𝐴 ( ∀ 𝑦 ∈ 𝐵 ¬ 𝑥 < 𝑦 ∧ ∀ 𝑦 ∈ 𝐴 ( 𝑦 < 𝑥 → ∃ 𝑧 ∈ 𝐵 𝑦 < 𝑧 ) ) ↔ ∃ 𝑥 ∈ 𝐴 ( ∀ 𝑦 ∈ 𝐵 ¬ 𝑥 < 𝑦 ∧ ∀ 𝑦 ∈ 𝐴 ( 𝑦 < 𝑥 → ∃ 𝑤 ∈ 𝐵 𝑦 < 𝑤 ) ) ) |
24 |
2 23
|
sylib |
⊢ ( 𝜑 → ∃ 𝑥 ∈ 𝐴 ( ∀ 𝑦 ∈ 𝐵 ¬ 𝑥 < 𝑦 ∧ ∀ 𝑦 ∈ 𝐴 ( 𝑦 < 𝑥 → ∃ 𝑤 ∈ 𝐵 𝑦 < 𝑤 ) ) ) |
25 |
1 24
|
supnub |
⊢ ( 𝜑 → ( ( 𝑣 ∈ 𝐴 ∧ ∀ 𝑤 ∈ 𝐵 ¬ 𝑣 < 𝑤 ) → ¬ 𝑣 < sup ( 𝐵 , 𝐴 , < ) ) ) |
26 |
17 25
|
biimtrid |
⊢ ( 𝜑 → ( 𝑣 ∈ { 𝑥 ∈ 𝐴 ∣ ∀ 𝑤 ∈ 𝐵 ¬ 𝑥 < 𝑤 } → ¬ 𝑣 < sup ( 𝐵 , 𝐴 , < ) ) ) |
27 |
26
|
imp |
⊢ ( ( 𝜑 ∧ 𝑣 ∈ { 𝑥 ∈ 𝐴 ∣ ∀ 𝑤 ∈ 𝐵 ¬ 𝑥 < 𝑤 } ) → ¬ 𝑣 < sup ( 𝐵 , 𝐴 , < ) ) |
28 |
1 3 13 27
|
infmin |
⊢ ( 𝜑 → inf ( { 𝑥 ∈ 𝐴 ∣ ∀ 𝑤 ∈ 𝐵 ¬ 𝑥 < 𝑤 } , 𝐴 , < ) = sup ( 𝐵 , 𝐴 , < ) ) |
29 |
28
|
eqcomd |
⊢ ( 𝜑 → sup ( 𝐵 , 𝐴 , < ) = inf ( { 𝑥 ∈ 𝐴 ∣ ∀ 𝑤 ∈ 𝐵 ¬ 𝑥 < 𝑤 } , 𝐴 , < ) ) |