| Step |
Hyp |
Ref |
Expression |
| 1 |
|
supiso.1 |
⊢ ( 𝜑 → 𝐹 Isom 𝑅 , 𝑆 ( 𝐴 , 𝐵 ) ) |
| 2 |
|
supiso.2 |
⊢ ( 𝜑 → 𝐶 ⊆ 𝐴 ) |
| 3 |
|
supisoex.3 |
⊢ ( 𝜑 → ∃ 𝑥 ∈ 𝐴 ( ∀ 𝑦 ∈ 𝐶 ¬ 𝑥 𝑅 𝑦 ∧ ∀ 𝑦 ∈ 𝐴 ( 𝑦 𝑅 𝑥 → ∃ 𝑧 ∈ 𝐶 𝑦 𝑅 𝑧 ) ) ) |
| 4 |
|
supiso.4 |
⊢ ( 𝜑 → 𝑅 Or 𝐴 ) |
| 5 |
|
isoso |
⊢ ( 𝐹 Isom 𝑅 , 𝑆 ( 𝐴 , 𝐵 ) → ( 𝑅 Or 𝐴 ↔ 𝑆 Or 𝐵 ) ) |
| 6 |
1 5
|
syl |
⊢ ( 𝜑 → ( 𝑅 Or 𝐴 ↔ 𝑆 Or 𝐵 ) ) |
| 7 |
4 6
|
mpbid |
⊢ ( 𝜑 → 𝑆 Or 𝐵 ) |
| 8 |
|
isof1o |
⊢ ( 𝐹 Isom 𝑅 , 𝑆 ( 𝐴 , 𝐵 ) → 𝐹 : 𝐴 –1-1-onto→ 𝐵 ) |
| 9 |
|
f1of |
⊢ ( 𝐹 : 𝐴 –1-1-onto→ 𝐵 → 𝐹 : 𝐴 ⟶ 𝐵 ) |
| 10 |
1 8 9
|
3syl |
⊢ ( 𝜑 → 𝐹 : 𝐴 ⟶ 𝐵 ) |
| 11 |
4 3
|
supcl |
⊢ ( 𝜑 → sup ( 𝐶 , 𝐴 , 𝑅 ) ∈ 𝐴 ) |
| 12 |
10 11
|
ffvelcdmd |
⊢ ( 𝜑 → ( 𝐹 ‘ sup ( 𝐶 , 𝐴 , 𝑅 ) ) ∈ 𝐵 ) |
| 13 |
4 3
|
supub |
⊢ ( 𝜑 → ( 𝑢 ∈ 𝐶 → ¬ sup ( 𝐶 , 𝐴 , 𝑅 ) 𝑅 𝑢 ) ) |
| 14 |
13
|
ralrimiv |
⊢ ( 𝜑 → ∀ 𝑢 ∈ 𝐶 ¬ sup ( 𝐶 , 𝐴 , 𝑅 ) 𝑅 𝑢 ) |
| 15 |
4 3
|
suplub |
⊢ ( 𝜑 → ( ( 𝑢 ∈ 𝐴 ∧ 𝑢 𝑅 sup ( 𝐶 , 𝐴 , 𝑅 ) ) → ∃ 𝑧 ∈ 𝐶 𝑢 𝑅 𝑧 ) ) |
| 16 |
15
|
expd |
⊢ ( 𝜑 → ( 𝑢 ∈ 𝐴 → ( 𝑢 𝑅 sup ( 𝐶 , 𝐴 , 𝑅 ) → ∃ 𝑧 ∈ 𝐶 𝑢 𝑅 𝑧 ) ) ) |
| 17 |
16
|
ralrimiv |
⊢ ( 𝜑 → ∀ 𝑢 ∈ 𝐴 ( 𝑢 𝑅 sup ( 𝐶 , 𝐴 , 𝑅 ) → ∃ 𝑧 ∈ 𝐶 𝑢 𝑅 𝑧 ) ) |
| 18 |
1 2
|
supisolem |
⊢ ( ( 𝜑 ∧ sup ( 𝐶 , 𝐴 , 𝑅 ) ∈ 𝐴 ) → ( ( ∀ 𝑢 ∈ 𝐶 ¬ sup ( 𝐶 , 𝐴 , 𝑅 ) 𝑅 𝑢 ∧ ∀ 𝑢 ∈ 𝐴 ( 𝑢 𝑅 sup ( 𝐶 , 𝐴 , 𝑅 ) → ∃ 𝑧 ∈ 𝐶 𝑢 𝑅 𝑧 ) ) ↔ ( ∀ 𝑤 ∈ ( 𝐹 “ 𝐶 ) ¬ ( 𝐹 ‘ sup ( 𝐶 , 𝐴 , 𝑅 ) ) 𝑆 𝑤 ∧ ∀ 𝑤 ∈ 𝐵 ( 𝑤 𝑆 ( 𝐹 ‘ sup ( 𝐶 , 𝐴 , 𝑅 ) ) → ∃ 𝑣 ∈ ( 𝐹 “ 𝐶 ) 𝑤 𝑆 𝑣 ) ) ) ) |
| 19 |
11 18
|
mpdan |
⊢ ( 𝜑 → ( ( ∀ 𝑢 ∈ 𝐶 ¬ sup ( 𝐶 , 𝐴 , 𝑅 ) 𝑅 𝑢 ∧ ∀ 𝑢 ∈ 𝐴 ( 𝑢 𝑅 sup ( 𝐶 , 𝐴 , 𝑅 ) → ∃ 𝑧 ∈ 𝐶 𝑢 𝑅 𝑧 ) ) ↔ ( ∀ 𝑤 ∈ ( 𝐹 “ 𝐶 ) ¬ ( 𝐹 ‘ sup ( 𝐶 , 𝐴 , 𝑅 ) ) 𝑆 𝑤 ∧ ∀ 𝑤 ∈ 𝐵 ( 𝑤 𝑆 ( 𝐹 ‘ sup ( 𝐶 , 𝐴 , 𝑅 ) ) → ∃ 𝑣 ∈ ( 𝐹 “ 𝐶 ) 𝑤 𝑆 𝑣 ) ) ) ) |
| 20 |
14 17 19
|
mpbi2and |
⊢ ( 𝜑 → ( ∀ 𝑤 ∈ ( 𝐹 “ 𝐶 ) ¬ ( 𝐹 ‘ sup ( 𝐶 , 𝐴 , 𝑅 ) ) 𝑆 𝑤 ∧ ∀ 𝑤 ∈ 𝐵 ( 𝑤 𝑆 ( 𝐹 ‘ sup ( 𝐶 , 𝐴 , 𝑅 ) ) → ∃ 𝑣 ∈ ( 𝐹 “ 𝐶 ) 𝑤 𝑆 𝑣 ) ) ) |
| 21 |
20
|
simpld |
⊢ ( 𝜑 → ∀ 𝑤 ∈ ( 𝐹 “ 𝐶 ) ¬ ( 𝐹 ‘ sup ( 𝐶 , 𝐴 , 𝑅 ) ) 𝑆 𝑤 ) |
| 22 |
21
|
r19.21bi |
⊢ ( ( 𝜑 ∧ 𝑤 ∈ ( 𝐹 “ 𝐶 ) ) → ¬ ( 𝐹 ‘ sup ( 𝐶 , 𝐴 , 𝑅 ) ) 𝑆 𝑤 ) |
| 23 |
20
|
simprd |
⊢ ( 𝜑 → ∀ 𝑤 ∈ 𝐵 ( 𝑤 𝑆 ( 𝐹 ‘ sup ( 𝐶 , 𝐴 , 𝑅 ) ) → ∃ 𝑣 ∈ ( 𝐹 “ 𝐶 ) 𝑤 𝑆 𝑣 ) ) |
| 24 |
23
|
r19.21bi |
⊢ ( ( 𝜑 ∧ 𝑤 ∈ 𝐵 ) → ( 𝑤 𝑆 ( 𝐹 ‘ sup ( 𝐶 , 𝐴 , 𝑅 ) ) → ∃ 𝑣 ∈ ( 𝐹 “ 𝐶 ) 𝑤 𝑆 𝑣 ) ) |
| 25 |
24
|
impr |
⊢ ( ( 𝜑 ∧ ( 𝑤 ∈ 𝐵 ∧ 𝑤 𝑆 ( 𝐹 ‘ sup ( 𝐶 , 𝐴 , 𝑅 ) ) ) ) → ∃ 𝑣 ∈ ( 𝐹 “ 𝐶 ) 𝑤 𝑆 𝑣 ) |
| 26 |
7 12 22 25
|
eqsupd |
⊢ ( 𝜑 → sup ( ( 𝐹 “ 𝐶 ) , 𝐵 , 𝑆 ) = ( 𝐹 ‘ sup ( 𝐶 , 𝐴 , 𝑅 ) ) ) |