Step |
Hyp |
Ref |
Expression |
1 |
|
supiso.1 |
⊢ ( 𝜑 → 𝐹 Isom 𝑅 , 𝑆 ( 𝐴 , 𝐵 ) ) |
2 |
|
supiso.2 |
⊢ ( 𝜑 → 𝐶 ⊆ 𝐴 ) |
3 |
|
supisoex.3 |
⊢ ( 𝜑 → ∃ 𝑥 ∈ 𝐴 ( ∀ 𝑦 ∈ 𝐶 ¬ 𝑥 𝑅 𝑦 ∧ ∀ 𝑦 ∈ 𝐴 ( 𝑦 𝑅 𝑥 → ∃ 𝑧 ∈ 𝐶 𝑦 𝑅 𝑧 ) ) ) |
4 |
|
supiso.4 |
⊢ ( 𝜑 → 𝑅 Or 𝐴 ) |
5 |
|
isoso |
⊢ ( 𝐹 Isom 𝑅 , 𝑆 ( 𝐴 , 𝐵 ) → ( 𝑅 Or 𝐴 ↔ 𝑆 Or 𝐵 ) ) |
6 |
1 5
|
syl |
⊢ ( 𝜑 → ( 𝑅 Or 𝐴 ↔ 𝑆 Or 𝐵 ) ) |
7 |
4 6
|
mpbid |
⊢ ( 𝜑 → 𝑆 Or 𝐵 ) |
8 |
|
isof1o |
⊢ ( 𝐹 Isom 𝑅 , 𝑆 ( 𝐴 , 𝐵 ) → 𝐹 : 𝐴 –1-1-onto→ 𝐵 ) |
9 |
|
f1of |
⊢ ( 𝐹 : 𝐴 –1-1-onto→ 𝐵 → 𝐹 : 𝐴 ⟶ 𝐵 ) |
10 |
1 8 9
|
3syl |
⊢ ( 𝜑 → 𝐹 : 𝐴 ⟶ 𝐵 ) |
11 |
4 3
|
supcl |
⊢ ( 𝜑 → sup ( 𝐶 , 𝐴 , 𝑅 ) ∈ 𝐴 ) |
12 |
10 11
|
ffvelrnd |
⊢ ( 𝜑 → ( 𝐹 ‘ sup ( 𝐶 , 𝐴 , 𝑅 ) ) ∈ 𝐵 ) |
13 |
4 3
|
supub |
⊢ ( 𝜑 → ( 𝑢 ∈ 𝐶 → ¬ sup ( 𝐶 , 𝐴 , 𝑅 ) 𝑅 𝑢 ) ) |
14 |
13
|
ralrimiv |
⊢ ( 𝜑 → ∀ 𝑢 ∈ 𝐶 ¬ sup ( 𝐶 , 𝐴 , 𝑅 ) 𝑅 𝑢 ) |
15 |
4 3
|
suplub |
⊢ ( 𝜑 → ( ( 𝑢 ∈ 𝐴 ∧ 𝑢 𝑅 sup ( 𝐶 , 𝐴 , 𝑅 ) ) → ∃ 𝑧 ∈ 𝐶 𝑢 𝑅 𝑧 ) ) |
16 |
15
|
expd |
⊢ ( 𝜑 → ( 𝑢 ∈ 𝐴 → ( 𝑢 𝑅 sup ( 𝐶 , 𝐴 , 𝑅 ) → ∃ 𝑧 ∈ 𝐶 𝑢 𝑅 𝑧 ) ) ) |
17 |
16
|
ralrimiv |
⊢ ( 𝜑 → ∀ 𝑢 ∈ 𝐴 ( 𝑢 𝑅 sup ( 𝐶 , 𝐴 , 𝑅 ) → ∃ 𝑧 ∈ 𝐶 𝑢 𝑅 𝑧 ) ) |
18 |
1 2
|
supisolem |
⊢ ( ( 𝜑 ∧ sup ( 𝐶 , 𝐴 , 𝑅 ) ∈ 𝐴 ) → ( ( ∀ 𝑢 ∈ 𝐶 ¬ sup ( 𝐶 , 𝐴 , 𝑅 ) 𝑅 𝑢 ∧ ∀ 𝑢 ∈ 𝐴 ( 𝑢 𝑅 sup ( 𝐶 , 𝐴 , 𝑅 ) → ∃ 𝑧 ∈ 𝐶 𝑢 𝑅 𝑧 ) ) ↔ ( ∀ 𝑤 ∈ ( 𝐹 “ 𝐶 ) ¬ ( 𝐹 ‘ sup ( 𝐶 , 𝐴 , 𝑅 ) ) 𝑆 𝑤 ∧ ∀ 𝑤 ∈ 𝐵 ( 𝑤 𝑆 ( 𝐹 ‘ sup ( 𝐶 , 𝐴 , 𝑅 ) ) → ∃ 𝑣 ∈ ( 𝐹 “ 𝐶 ) 𝑤 𝑆 𝑣 ) ) ) ) |
19 |
11 18
|
mpdan |
⊢ ( 𝜑 → ( ( ∀ 𝑢 ∈ 𝐶 ¬ sup ( 𝐶 , 𝐴 , 𝑅 ) 𝑅 𝑢 ∧ ∀ 𝑢 ∈ 𝐴 ( 𝑢 𝑅 sup ( 𝐶 , 𝐴 , 𝑅 ) → ∃ 𝑧 ∈ 𝐶 𝑢 𝑅 𝑧 ) ) ↔ ( ∀ 𝑤 ∈ ( 𝐹 “ 𝐶 ) ¬ ( 𝐹 ‘ sup ( 𝐶 , 𝐴 , 𝑅 ) ) 𝑆 𝑤 ∧ ∀ 𝑤 ∈ 𝐵 ( 𝑤 𝑆 ( 𝐹 ‘ sup ( 𝐶 , 𝐴 , 𝑅 ) ) → ∃ 𝑣 ∈ ( 𝐹 “ 𝐶 ) 𝑤 𝑆 𝑣 ) ) ) ) |
20 |
14 17 19
|
mpbi2and |
⊢ ( 𝜑 → ( ∀ 𝑤 ∈ ( 𝐹 “ 𝐶 ) ¬ ( 𝐹 ‘ sup ( 𝐶 , 𝐴 , 𝑅 ) ) 𝑆 𝑤 ∧ ∀ 𝑤 ∈ 𝐵 ( 𝑤 𝑆 ( 𝐹 ‘ sup ( 𝐶 , 𝐴 , 𝑅 ) ) → ∃ 𝑣 ∈ ( 𝐹 “ 𝐶 ) 𝑤 𝑆 𝑣 ) ) ) |
21 |
20
|
simpld |
⊢ ( 𝜑 → ∀ 𝑤 ∈ ( 𝐹 “ 𝐶 ) ¬ ( 𝐹 ‘ sup ( 𝐶 , 𝐴 , 𝑅 ) ) 𝑆 𝑤 ) |
22 |
21
|
r19.21bi |
⊢ ( ( 𝜑 ∧ 𝑤 ∈ ( 𝐹 “ 𝐶 ) ) → ¬ ( 𝐹 ‘ sup ( 𝐶 , 𝐴 , 𝑅 ) ) 𝑆 𝑤 ) |
23 |
20
|
simprd |
⊢ ( 𝜑 → ∀ 𝑤 ∈ 𝐵 ( 𝑤 𝑆 ( 𝐹 ‘ sup ( 𝐶 , 𝐴 , 𝑅 ) ) → ∃ 𝑣 ∈ ( 𝐹 “ 𝐶 ) 𝑤 𝑆 𝑣 ) ) |
24 |
23
|
r19.21bi |
⊢ ( ( 𝜑 ∧ 𝑤 ∈ 𝐵 ) → ( 𝑤 𝑆 ( 𝐹 ‘ sup ( 𝐶 , 𝐴 , 𝑅 ) ) → ∃ 𝑣 ∈ ( 𝐹 “ 𝐶 ) 𝑤 𝑆 𝑣 ) ) |
25 |
24
|
impr |
⊢ ( ( 𝜑 ∧ ( 𝑤 ∈ 𝐵 ∧ 𝑤 𝑆 ( 𝐹 ‘ sup ( 𝐶 , 𝐴 , 𝑅 ) ) ) ) → ∃ 𝑣 ∈ ( 𝐹 “ 𝐶 ) 𝑤 𝑆 𝑣 ) |
26 |
7 12 22 25
|
eqsupd |
⊢ ( 𝜑 → sup ( ( 𝐹 “ 𝐶 ) , 𝐵 , 𝑆 ) = ( 𝐹 ‘ sup ( 𝐶 , 𝐴 , 𝑅 ) ) ) |