Step |
Hyp |
Ref |
Expression |
1 |
|
supiso.1 |
⊢ ( 𝜑 → 𝐹 Isom 𝑅 , 𝑆 ( 𝐴 , 𝐵 ) ) |
2 |
|
supiso.2 |
⊢ ( 𝜑 → 𝐶 ⊆ 𝐴 ) |
3 |
|
supisoex.3 |
⊢ ( 𝜑 → ∃ 𝑥 ∈ 𝐴 ( ∀ 𝑦 ∈ 𝐶 ¬ 𝑥 𝑅 𝑦 ∧ ∀ 𝑦 ∈ 𝐴 ( 𝑦 𝑅 𝑥 → ∃ 𝑧 ∈ 𝐶 𝑦 𝑅 𝑧 ) ) ) |
4 |
|
simpl |
⊢ ( ( 𝐹 Isom 𝑅 , 𝑆 ( 𝐴 , 𝐵 ) ∧ 𝐶 ⊆ 𝐴 ) → 𝐹 Isom 𝑅 , 𝑆 ( 𝐴 , 𝐵 ) ) |
5 |
|
simpr |
⊢ ( ( 𝐹 Isom 𝑅 , 𝑆 ( 𝐴 , 𝐵 ) ∧ 𝐶 ⊆ 𝐴 ) → 𝐶 ⊆ 𝐴 ) |
6 |
4 5
|
supisolem |
⊢ ( ( ( 𝐹 Isom 𝑅 , 𝑆 ( 𝐴 , 𝐵 ) ∧ 𝐶 ⊆ 𝐴 ) ∧ 𝑥 ∈ 𝐴 ) → ( ( ∀ 𝑦 ∈ 𝐶 ¬ 𝑥 𝑅 𝑦 ∧ ∀ 𝑦 ∈ 𝐴 ( 𝑦 𝑅 𝑥 → ∃ 𝑧 ∈ 𝐶 𝑦 𝑅 𝑧 ) ) ↔ ( ∀ 𝑤 ∈ ( 𝐹 “ 𝐶 ) ¬ ( 𝐹 ‘ 𝑥 ) 𝑆 𝑤 ∧ ∀ 𝑤 ∈ 𝐵 ( 𝑤 𝑆 ( 𝐹 ‘ 𝑥 ) → ∃ 𝑣 ∈ ( 𝐹 “ 𝐶 ) 𝑤 𝑆 𝑣 ) ) ) ) |
7 |
|
isof1o |
⊢ ( 𝐹 Isom 𝑅 , 𝑆 ( 𝐴 , 𝐵 ) → 𝐹 : 𝐴 –1-1-onto→ 𝐵 ) |
8 |
|
f1of |
⊢ ( 𝐹 : 𝐴 –1-1-onto→ 𝐵 → 𝐹 : 𝐴 ⟶ 𝐵 ) |
9 |
4 7 8
|
3syl |
⊢ ( ( 𝐹 Isom 𝑅 , 𝑆 ( 𝐴 , 𝐵 ) ∧ 𝐶 ⊆ 𝐴 ) → 𝐹 : 𝐴 ⟶ 𝐵 ) |
10 |
9
|
ffvelrnda |
⊢ ( ( ( 𝐹 Isom 𝑅 , 𝑆 ( 𝐴 , 𝐵 ) ∧ 𝐶 ⊆ 𝐴 ) ∧ 𝑥 ∈ 𝐴 ) → ( 𝐹 ‘ 𝑥 ) ∈ 𝐵 ) |
11 |
|
breq1 |
⊢ ( 𝑢 = ( 𝐹 ‘ 𝑥 ) → ( 𝑢 𝑆 𝑤 ↔ ( 𝐹 ‘ 𝑥 ) 𝑆 𝑤 ) ) |
12 |
11
|
notbid |
⊢ ( 𝑢 = ( 𝐹 ‘ 𝑥 ) → ( ¬ 𝑢 𝑆 𝑤 ↔ ¬ ( 𝐹 ‘ 𝑥 ) 𝑆 𝑤 ) ) |
13 |
12
|
ralbidv |
⊢ ( 𝑢 = ( 𝐹 ‘ 𝑥 ) → ( ∀ 𝑤 ∈ ( 𝐹 “ 𝐶 ) ¬ 𝑢 𝑆 𝑤 ↔ ∀ 𝑤 ∈ ( 𝐹 “ 𝐶 ) ¬ ( 𝐹 ‘ 𝑥 ) 𝑆 𝑤 ) ) |
14 |
|
breq2 |
⊢ ( 𝑢 = ( 𝐹 ‘ 𝑥 ) → ( 𝑤 𝑆 𝑢 ↔ 𝑤 𝑆 ( 𝐹 ‘ 𝑥 ) ) ) |
15 |
14
|
imbi1d |
⊢ ( 𝑢 = ( 𝐹 ‘ 𝑥 ) → ( ( 𝑤 𝑆 𝑢 → ∃ 𝑣 ∈ ( 𝐹 “ 𝐶 ) 𝑤 𝑆 𝑣 ) ↔ ( 𝑤 𝑆 ( 𝐹 ‘ 𝑥 ) → ∃ 𝑣 ∈ ( 𝐹 “ 𝐶 ) 𝑤 𝑆 𝑣 ) ) ) |
16 |
15
|
ralbidv |
⊢ ( 𝑢 = ( 𝐹 ‘ 𝑥 ) → ( ∀ 𝑤 ∈ 𝐵 ( 𝑤 𝑆 𝑢 → ∃ 𝑣 ∈ ( 𝐹 “ 𝐶 ) 𝑤 𝑆 𝑣 ) ↔ ∀ 𝑤 ∈ 𝐵 ( 𝑤 𝑆 ( 𝐹 ‘ 𝑥 ) → ∃ 𝑣 ∈ ( 𝐹 “ 𝐶 ) 𝑤 𝑆 𝑣 ) ) ) |
17 |
13 16
|
anbi12d |
⊢ ( 𝑢 = ( 𝐹 ‘ 𝑥 ) → ( ( ∀ 𝑤 ∈ ( 𝐹 “ 𝐶 ) ¬ 𝑢 𝑆 𝑤 ∧ ∀ 𝑤 ∈ 𝐵 ( 𝑤 𝑆 𝑢 → ∃ 𝑣 ∈ ( 𝐹 “ 𝐶 ) 𝑤 𝑆 𝑣 ) ) ↔ ( ∀ 𝑤 ∈ ( 𝐹 “ 𝐶 ) ¬ ( 𝐹 ‘ 𝑥 ) 𝑆 𝑤 ∧ ∀ 𝑤 ∈ 𝐵 ( 𝑤 𝑆 ( 𝐹 ‘ 𝑥 ) → ∃ 𝑣 ∈ ( 𝐹 “ 𝐶 ) 𝑤 𝑆 𝑣 ) ) ) ) |
18 |
17
|
rspcev |
⊢ ( ( ( 𝐹 ‘ 𝑥 ) ∈ 𝐵 ∧ ( ∀ 𝑤 ∈ ( 𝐹 “ 𝐶 ) ¬ ( 𝐹 ‘ 𝑥 ) 𝑆 𝑤 ∧ ∀ 𝑤 ∈ 𝐵 ( 𝑤 𝑆 ( 𝐹 ‘ 𝑥 ) → ∃ 𝑣 ∈ ( 𝐹 “ 𝐶 ) 𝑤 𝑆 𝑣 ) ) ) → ∃ 𝑢 ∈ 𝐵 ( ∀ 𝑤 ∈ ( 𝐹 “ 𝐶 ) ¬ 𝑢 𝑆 𝑤 ∧ ∀ 𝑤 ∈ 𝐵 ( 𝑤 𝑆 𝑢 → ∃ 𝑣 ∈ ( 𝐹 “ 𝐶 ) 𝑤 𝑆 𝑣 ) ) ) |
19 |
18
|
ex |
⊢ ( ( 𝐹 ‘ 𝑥 ) ∈ 𝐵 → ( ( ∀ 𝑤 ∈ ( 𝐹 “ 𝐶 ) ¬ ( 𝐹 ‘ 𝑥 ) 𝑆 𝑤 ∧ ∀ 𝑤 ∈ 𝐵 ( 𝑤 𝑆 ( 𝐹 ‘ 𝑥 ) → ∃ 𝑣 ∈ ( 𝐹 “ 𝐶 ) 𝑤 𝑆 𝑣 ) ) → ∃ 𝑢 ∈ 𝐵 ( ∀ 𝑤 ∈ ( 𝐹 “ 𝐶 ) ¬ 𝑢 𝑆 𝑤 ∧ ∀ 𝑤 ∈ 𝐵 ( 𝑤 𝑆 𝑢 → ∃ 𝑣 ∈ ( 𝐹 “ 𝐶 ) 𝑤 𝑆 𝑣 ) ) ) ) |
20 |
10 19
|
syl |
⊢ ( ( ( 𝐹 Isom 𝑅 , 𝑆 ( 𝐴 , 𝐵 ) ∧ 𝐶 ⊆ 𝐴 ) ∧ 𝑥 ∈ 𝐴 ) → ( ( ∀ 𝑤 ∈ ( 𝐹 “ 𝐶 ) ¬ ( 𝐹 ‘ 𝑥 ) 𝑆 𝑤 ∧ ∀ 𝑤 ∈ 𝐵 ( 𝑤 𝑆 ( 𝐹 ‘ 𝑥 ) → ∃ 𝑣 ∈ ( 𝐹 “ 𝐶 ) 𝑤 𝑆 𝑣 ) ) → ∃ 𝑢 ∈ 𝐵 ( ∀ 𝑤 ∈ ( 𝐹 “ 𝐶 ) ¬ 𝑢 𝑆 𝑤 ∧ ∀ 𝑤 ∈ 𝐵 ( 𝑤 𝑆 𝑢 → ∃ 𝑣 ∈ ( 𝐹 “ 𝐶 ) 𝑤 𝑆 𝑣 ) ) ) ) |
21 |
6 20
|
sylbid |
⊢ ( ( ( 𝐹 Isom 𝑅 , 𝑆 ( 𝐴 , 𝐵 ) ∧ 𝐶 ⊆ 𝐴 ) ∧ 𝑥 ∈ 𝐴 ) → ( ( ∀ 𝑦 ∈ 𝐶 ¬ 𝑥 𝑅 𝑦 ∧ ∀ 𝑦 ∈ 𝐴 ( 𝑦 𝑅 𝑥 → ∃ 𝑧 ∈ 𝐶 𝑦 𝑅 𝑧 ) ) → ∃ 𝑢 ∈ 𝐵 ( ∀ 𝑤 ∈ ( 𝐹 “ 𝐶 ) ¬ 𝑢 𝑆 𝑤 ∧ ∀ 𝑤 ∈ 𝐵 ( 𝑤 𝑆 𝑢 → ∃ 𝑣 ∈ ( 𝐹 “ 𝐶 ) 𝑤 𝑆 𝑣 ) ) ) ) |
22 |
21
|
rexlimdva |
⊢ ( ( 𝐹 Isom 𝑅 , 𝑆 ( 𝐴 , 𝐵 ) ∧ 𝐶 ⊆ 𝐴 ) → ( ∃ 𝑥 ∈ 𝐴 ( ∀ 𝑦 ∈ 𝐶 ¬ 𝑥 𝑅 𝑦 ∧ ∀ 𝑦 ∈ 𝐴 ( 𝑦 𝑅 𝑥 → ∃ 𝑧 ∈ 𝐶 𝑦 𝑅 𝑧 ) ) → ∃ 𝑢 ∈ 𝐵 ( ∀ 𝑤 ∈ ( 𝐹 “ 𝐶 ) ¬ 𝑢 𝑆 𝑤 ∧ ∀ 𝑤 ∈ 𝐵 ( 𝑤 𝑆 𝑢 → ∃ 𝑣 ∈ ( 𝐹 “ 𝐶 ) 𝑤 𝑆 𝑣 ) ) ) ) |
23 |
1 2 22
|
syl2anc |
⊢ ( 𝜑 → ( ∃ 𝑥 ∈ 𝐴 ( ∀ 𝑦 ∈ 𝐶 ¬ 𝑥 𝑅 𝑦 ∧ ∀ 𝑦 ∈ 𝐴 ( 𝑦 𝑅 𝑥 → ∃ 𝑧 ∈ 𝐶 𝑦 𝑅 𝑧 ) ) → ∃ 𝑢 ∈ 𝐵 ( ∀ 𝑤 ∈ ( 𝐹 “ 𝐶 ) ¬ 𝑢 𝑆 𝑤 ∧ ∀ 𝑤 ∈ 𝐵 ( 𝑤 𝑆 𝑢 → ∃ 𝑣 ∈ ( 𝐹 “ 𝐶 ) 𝑤 𝑆 𝑣 ) ) ) ) |
24 |
3 23
|
mpd |
⊢ ( 𝜑 → ∃ 𝑢 ∈ 𝐵 ( ∀ 𝑤 ∈ ( 𝐹 “ 𝐶 ) ¬ 𝑢 𝑆 𝑤 ∧ ∀ 𝑤 ∈ 𝐵 ( 𝑤 𝑆 𝑢 → ∃ 𝑣 ∈ ( 𝐹 “ 𝐶 ) 𝑤 𝑆 𝑣 ) ) ) |