| Step |
Hyp |
Ref |
Expression |
| 1 |
|
supiso.1 |
⊢ ( 𝜑 → 𝐹 Isom 𝑅 , 𝑆 ( 𝐴 , 𝐵 ) ) |
| 2 |
|
supiso.2 |
⊢ ( 𝜑 → 𝐶 ⊆ 𝐴 ) |
| 3 |
1 2
|
jca |
⊢ ( 𝜑 → ( 𝐹 Isom 𝑅 , 𝑆 ( 𝐴 , 𝐵 ) ∧ 𝐶 ⊆ 𝐴 ) ) |
| 4 |
|
simpll |
⊢ ( ( ( 𝐹 Isom 𝑅 , 𝑆 ( 𝐴 , 𝐵 ) ∧ 𝐶 ⊆ 𝐴 ) ∧ 𝐷 ∈ 𝐴 ) → 𝐹 Isom 𝑅 , 𝑆 ( 𝐴 , 𝐵 ) ) |
| 5 |
4
|
adantr |
⊢ ( ( ( ( 𝐹 Isom 𝑅 , 𝑆 ( 𝐴 , 𝐵 ) ∧ 𝐶 ⊆ 𝐴 ) ∧ 𝐷 ∈ 𝐴 ) ∧ 𝑦 ∈ 𝐶 ) → 𝐹 Isom 𝑅 , 𝑆 ( 𝐴 , 𝐵 ) ) |
| 6 |
|
simplr |
⊢ ( ( ( ( 𝐹 Isom 𝑅 , 𝑆 ( 𝐴 , 𝐵 ) ∧ 𝐶 ⊆ 𝐴 ) ∧ 𝐷 ∈ 𝐴 ) ∧ 𝑦 ∈ 𝐶 ) → 𝐷 ∈ 𝐴 ) |
| 7 |
|
simplr |
⊢ ( ( ( 𝐹 Isom 𝑅 , 𝑆 ( 𝐴 , 𝐵 ) ∧ 𝐶 ⊆ 𝐴 ) ∧ 𝐷 ∈ 𝐴 ) → 𝐶 ⊆ 𝐴 ) |
| 8 |
7
|
sselda |
⊢ ( ( ( ( 𝐹 Isom 𝑅 , 𝑆 ( 𝐴 , 𝐵 ) ∧ 𝐶 ⊆ 𝐴 ) ∧ 𝐷 ∈ 𝐴 ) ∧ 𝑦 ∈ 𝐶 ) → 𝑦 ∈ 𝐴 ) |
| 9 |
|
isorel |
⊢ ( ( 𝐹 Isom 𝑅 , 𝑆 ( 𝐴 , 𝐵 ) ∧ ( 𝐷 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴 ) ) → ( 𝐷 𝑅 𝑦 ↔ ( 𝐹 ‘ 𝐷 ) 𝑆 ( 𝐹 ‘ 𝑦 ) ) ) |
| 10 |
5 6 8 9
|
syl12anc |
⊢ ( ( ( ( 𝐹 Isom 𝑅 , 𝑆 ( 𝐴 , 𝐵 ) ∧ 𝐶 ⊆ 𝐴 ) ∧ 𝐷 ∈ 𝐴 ) ∧ 𝑦 ∈ 𝐶 ) → ( 𝐷 𝑅 𝑦 ↔ ( 𝐹 ‘ 𝐷 ) 𝑆 ( 𝐹 ‘ 𝑦 ) ) ) |
| 11 |
10
|
notbid |
⊢ ( ( ( ( 𝐹 Isom 𝑅 , 𝑆 ( 𝐴 , 𝐵 ) ∧ 𝐶 ⊆ 𝐴 ) ∧ 𝐷 ∈ 𝐴 ) ∧ 𝑦 ∈ 𝐶 ) → ( ¬ 𝐷 𝑅 𝑦 ↔ ¬ ( 𝐹 ‘ 𝐷 ) 𝑆 ( 𝐹 ‘ 𝑦 ) ) ) |
| 12 |
11
|
ralbidva |
⊢ ( ( ( 𝐹 Isom 𝑅 , 𝑆 ( 𝐴 , 𝐵 ) ∧ 𝐶 ⊆ 𝐴 ) ∧ 𝐷 ∈ 𝐴 ) → ( ∀ 𝑦 ∈ 𝐶 ¬ 𝐷 𝑅 𝑦 ↔ ∀ 𝑦 ∈ 𝐶 ¬ ( 𝐹 ‘ 𝐷 ) 𝑆 ( 𝐹 ‘ 𝑦 ) ) ) |
| 13 |
|
isof1o |
⊢ ( 𝐹 Isom 𝑅 , 𝑆 ( 𝐴 , 𝐵 ) → 𝐹 : 𝐴 –1-1-onto→ 𝐵 ) |
| 14 |
4 13
|
syl |
⊢ ( ( ( 𝐹 Isom 𝑅 , 𝑆 ( 𝐴 , 𝐵 ) ∧ 𝐶 ⊆ 𝐴 ) ∧ 𝐷 ∈ 𝐴 ) → 𝐹 : 𝐴 –1-1-onto→ 𝐵 ) |
| 15 |
|
f1ofn |
⊢ ( 𝐹 : 𝐴 –1-1-onto→ 𝐵 → 𝐹 Fn 𝐴 ) |
| 16 |
14 15
|
syl |
⊢ ( ( ( 𝐹 Isom 𝑅 , 𝑆 ( 𝐴 , 𝐵 ) ∧ 𝐶 ⊆ 𝐴 ) ∧ 𝐷 ∈ 𝐴 ) → 𝐹 Fn 𝐴 ) |
| 17 |
|
breq2 |
⊢ ( 𝑤 = ( 𝐹 ‘ 𝑦 ) → ( ( 𝐹 ‘ 𝐷 ) 𝑆 𝑤 ↔ ( 𝐹 ‘ 𝐷 ) 𝑆 ( 𝐹 ‘ 𝑦 ) ) ) |
| 18 |
17
|
notbid |
⊢ ( 𝑤 = ( 𝐹 ‘ 𝑦 ) → ( ¬ ( 𝐹 ‘ 𝐷 ) 𝑆 𝑤 ↔ ¬ ( 𝐹 ‘ 𝐷 ) 𝑆 ( 𝐹 ‘ 𝑦 ) ) ) |
| 19 |
18
|
ralima |
⊢ ( ( 𝐹 Fn 𝐴 ∧ 𝐶 ⊆ 𝐴 ) → ( ∀ 𝑤 ∈ ( 𝐹 “ 𝐶 ) ¬ ( 𝐹 ‘ 𝐷 ) 𝑆 𝑤 ↔ ∀ 𝑦 ∈ 𝐶 ¬ ( 𝐹 ‘ 𝐷 ) 𝑆 ( 𝐹 ‘ 𝑦 ) ) ) |
| 20 |
16 7 19
|
syl2anc |
⊢ ( ( ( 𝐹 Isom 𝑅 , 𝑆 ( 𝐴 , 𝐵 ) ∧ 𝐶 ⊆ 𝐴 ) ∧ 𝐷 ∈ 𝐴 ) → ( ∀ 𝑤 ∈ ( 𝐹 “ 𝐶 ) ¬ ( 𝐹 ‘ 𝐷 ) 𝑆 𝑤 ↔ ∀ 𝑦 ∈ 𝐶 ¬ ( 𝐹 ‘ 𝐷 ) 𝑆 ( 𝐹 ‘ 𝑦 ) ) ) |
| 21 |
12 20
|
bitr4d |
⊢ ( ( ( 𝐹 Isom 𝑅 , 𝑆 ( 𝐴 , 𝐵 ) ∧ 𝐶 ⊆ 𝐴 ) ∧ 𝐷 ∈ 𝐴 ) → ( ∀ 𝑦 ∈ 𝐶 ¬ 𝐷 𝑅 𝑦 ↔ ∀ 𝑤 ∈ ( 𝐹 “ 𝐶 ) ¬ ( 𝐹 ‘ 𝐷 ) 𝑆 𝑤 ) ) |
| 22 |
4
|
adantr |
⊢ ( ( ( ( 𝐹 Isom 𝑅 , 𝑆 ( 𝐴 , 𝐵 ) ∧ 𝐶 ⊆ 𝐴 ) ∧ 𝐷 ∈ 𝐴 ) ∧ 𝑦 ∈ 𝐴 ) → 𝐹 Isom 𝑅 , 𝑆 ( 𝐴 , 𝐵 ) ) |
| 23 |
|
simpr |
⊢ ( ( ( ( 𝐹 Isom 𝑅 , 𝑆 ( 𝐴 , 𝐵 ) ∧ 𝐶 ⊆ 𝐴 ) ∧ 𝐷 ∈ 𝐴 ) ∧ 𝑦 ∈ 𝐴 ) → 𝑦 ∈ 𝐴 ) |
| 24 |
|
simplr |
⊢ ( ( ( ( 𝐹 Isom 𝑅 , 𝑆 ( 𝐴 , 𝐵 ) ∧ 𝐶 ⊆ 𝐴 ) ∧ 𝐷 ∈ 𝐴 ) ∧ 𝑦 ∈ 𝐴 ) → 𝐷 ∈ 𝐴 ) |
| 25 |
|
isorel |
⊢ ( ( 𝐹 Isom 𝑅 , 𝑆 ( 𝐴 , 𝐵 ) ∧ ( 𝑦 ∈ 𝐴 ∧ 𝐷 ∈ 𝐴 ) ) → ( 𝑦 𝑅 𝐷 ↔ ( 𝐹 ‘ 𝑦 ) 𝑆 ( 𝐹 ‘ 𝐷 ) ) ) |
| 26 |
22 23 24 25
|
syl12anc |
⊢ ( ( ( ( 𝐹 Isom 𝑅 , 𝑆 ( 𝐴 , 𝐵 ) ∧ 𝐶 ⊆ 𝐴 ) ∧ 𝐷 ∈ 𝐴 ) ∧ 𝑦 ∈ 𝐴 ) → ( 𝑦 𝑅 𝐷 ↔ ( 𝐹 ‘ 𝑦 ) 𝑆 ( 𝐹 ‘ 𝐷 ) ) ) |
| 27 |
22
|
adantr |
⊢ ( ( ( ( ( 𝐹 Isom 𝑅 , 𝑆 ( 𝐴 , 𝐵 ) ∧ 𝐶 ⊆ 𝐴 ) ∧ 𝐷 ∈ 𝐴 ) ∧ 𝑦 ∈ 𝐴 ) ∧ 𝑧 ∈ 𝐶 ) → 𝐹 Isom 𝑅 , 𝑆 ( 𝐴 , 𝐵 ) ) |
| 28 |
|
simplr |
⊢ ( ( ( ( ( 𝐹 Isom 𝑅 , 𝑆 ( 𝐴 , 𝐵 ) ∧ 𝐶 ⊆ 𝐴 ) ∧ 𝐷 ∈ 𝐴 ) ∧ 𝑦 ∈ 𝐴 ) ∧ 𝑧 ∈ 𝐶 ) → 𝑦 ∈ 𝐴 ) |
| 29 |
7
|
adantr |
⊢ ( ( ( ( 𝐹 Isom 𝑅 , 𝑆 ( 𝐴 , 𝐵 ) ∧ 𝐶 ⊆ 𝐴 ) ∧ 𝐷 ∈ 𝐴 ) ∧ 𝑦 ∈ 𝐴 ) → 𝐶 ⊆ 𝐴 ) |
| 30 |
29
|
sselda |
⊢ ( ( ( ( ( 𝐹 Isom 𝑅 , 𝑆 ( 𝐴 , 𝐵 ) ∧ 𝐶 ⊆ 𝐴 ) ∧ 𝐷 ∈ 𝐴 ) ∧ 𝑦 ∈ 𝐴 ) ∧ 𝑧 ∈ 𝐶 ) → 𝑧 ∈ 𝐴 ) |
| 31 |
|
isorel |
⊢ ( ( 𝐹 Isom 𝑅 , 𝑆 ( 𝐴 , 𝐵 ) ∧ ( 𝑦 ∈ 𝐴 ∧ 𝑧 ∈ 𝐴 ) ) → ( 𝑦 𝑅 𝑧 ↔ ( 𝐹 ‘ 𝑦 ) 𝑆 ( 𝐹 ‘ 𝑧 ) ) ) |
| 32 |
27 28 30 31
|
syl12anc |
⊢ ( ( ( ( ( 𝐹 Isom 𝑅 , 𝑆 ( 𝐴 , 𝐵 ) ∧ 𝐶 ⊆ 𝐴 ) ∧ 𝐷 ∈ 𝐴 ) ∧ 𝑦 ∈ 𝐴 ) ∧ 𝑧 ∈ 𝐶 ) → ( 𝑦 𝑅 𝑧 ↔ ( 𝐹 ‘ 𝑦 ) 𝑆 ( 𝐹 ‘ 𝑧 ) ) ) |
| 33 |
32
|
rexbidva |
⊢ ( ( ( ( 𝐹 Isom 𝑅 , 𝑆 ( 𝐴 , 𝐵 ) ∧ 𝐶 ⊆ 𝐴 ) ∧ 𝐷 ∈ 𝐴 ) ∧ 𝑦 ∈ 𝐴 ) → ( ∃ 𝑧 ∈ 𝐶 𝑦 𝑅 𝑧 ↔ ∃ 𝑧 ∈ 𝐶 ( 𝐹 ‘ 𝑦 ) 𝑆 ( 𝐹 ‘ 𝑧 ) ) ) |
| 34 |
16
|
adantr |
⊢ ( ( ( ( 𝐹 Isom 𝑅 , 𝑆 ( 𝐴 , 𝐵 ) ∧ 𝐶 ⊆ 𝐴 ) ∧ 𝐷 ∈ 𝐴 ) ∧ 𝑦 ∈ 𝐴 ) → 𝐹 Fn 𝐴 ) |
| 35 |
|
breq2 |
⊢ ( 𝑣 = ( 𝐹 ‘ 𝑧 ) → ( ( 𝐹 ‘ 𝑦 ) 𝑆 𝑣 ↔ ( 𝐹 ‘ 𝑦 ) 𝑆 ( 𝐹 ‘ 𝑧 ) ) ) |
| 36 |
35
|
rexima |
⊢ ( ( 𝐹 Fn 𝐴 ∧ 𝐶 ⊆ 𝐴 ) → ( ∃ 𝑣 ∈ ( 𝐹 “ 𝐶 ) ( 𝐹 ‘ 𝑦 ) 𝑆 𝑣 ↔ ∃ 𝑧 ∈ 𝐶 ( 𝐹 ‘ 𝑦 ) 𝑆 ( 𝐹 ‘ 𝑧 ) ) ) |
| 37 |
34 29 36
|
syl2anc |
⊢ ( ( ( ( 𝐹 Isom 𝑅 , 𝑆 ( 𝐴 , 𝐵 ) ∧ 𝐶 ⊆ 𝐴 ) ∧ 𝐷 ∈ 𝐴 ) ∧ 𝑦 ∈ 𝐴 ) → ( ∃ 𝑣 ∈ ( 𝐹 “ 𝐶 ) ( 𝐹 ‘ 𝑦 ) 𝑆 𝑣 ↔ ∃ 𝑧 ∈ 𝐶 ( 𝐹 ‘ 𝑦 ) 𝑆 ( 𝐹 ‘ 𝑧 ) ) ) |
| 38 |
33 37
|
bitr4d |
⊢ ( ( ( ( 𝐹 Isom 𝑅 , 𝑆 ( 𝐴 , 𝐵 ) ∧ 𝐶 ⊆ 𝐴 ) ∧ 𝐷 ∈ 𝐴 ) ∧ 𝑦 ∈ 𝐴 ) → ( ∃ 𝑧 ∈ 𝐶 𝑦 𝑅 𝑧 ↔ ∃ 𝑣 ∈ ( 𝐹 “ 𝐶 ) ( 𝐹 ‘ 𝑦 ) 𝑆 𝑣 ) ) |
| 39 |
26 38
|
imbi12d |
⊢ ( ( ( ( 𝐹 Isom 𝑅 , 𝑆 ( 𝐴 , 𝐵 ) ∧ 𝐶 ⊆ 𝐴 ) ∧ 𝐷 ∈ 𝐴 ) ∧ 𝑦 ∈ 𝐴 ) → ( ( 𝑦 𝑅 𝐷 → ∃ 𝑧 ∈ 𝐶 𝑦 𝑅 𝑧 ) ↔ ( ( 𝐹 ‘ 𝑦 ) 𝑆 ( 𝐹 ‘ 𝐷 ) → ∃ 𝑣 ∈ ( 𝐹 “ 𝐶 ) ( 𝐹 ‘ 𝑦 ) 𝑆 𝑣 ) ) ) |
| 40 |
39
|
ralbidva |
⊢ ( ( ( 𝐹 Isom 𝑅 , 𝑆 ( 𝐴 , 𝐵 ) ∧ 𝐶 ⊆ 𝐴 ) ∧ 𝐷 ∈ 𝐴 ) → ( ∀ 𝑦 ∈ 𝐴 ( 𝑦 𝑅 𝐷 → ∃ 𝑧 ∈ 𝐶 𝑦 𝑅 𝑧 ) ↔ ∀ 𝑦 ∈ 𝐴 ( ( 𝐹 ‘ 𝑦 ) 𝑆 ( 𝐹 ‘ 𝐷 ) → ∃ 𝑣 ∈ ( 𝐹 “ 𝐶 ) ( 𝐹 ‘ 𝑦 ) 𝑆 𝑣 ) ) ) |
| 41 |
|
f1ofo |
⊢ ( 𝐹 : 𝐴 –1-1-onto→ 𝐵 → 𝐹 : 𝐴 –onto→ 𝐵 ) |
| 42 |
|
breq1 |
⊢ ( ( 𝐹 ‘ 𝑦 ) = 𝑤 → ( ( 𝐹 ‘ 𝑦 ) 𝑆 ( 𝐹 ‘ 𝐷 ) ↔ 𝑤 𝑆 ( 𝐹 ‘ 𝐷 ) ) ) |
| 43 |
|
breq1 |
⊢ ( ( 𝐹 ‘ 𝑦 ) = 𝑤 → ( ( 𝐹 ‘ 𝑦 ) 𝑆 𝑣 ↔ 𝑤 𝑆 𝑣 ) ) |
| 44 |
43
|
rexbidv |
⊢ ( ( 𝐹 ‘ 𝑦 ) = 𝑤 → ( ∃ 𝑣 ∈ ( 𝐹 “ 𝐶 ) ( 𝐹 ‘ 𝑦 ) 𝑆 𝑣 ↔ ∃ 𝑣 ∈ ( 𝐹 “ 𝐶 ) 𝑤 𝑆 𝑣 ) ) |
| 45 |
42 44
|
imbi12d |
⊢ ( ( 𝐹 ‘ 𝑦 ) = 𝑤 → ( ( ( 𝐹 ‘ 𝑦 ) 𝑆 ( 𝐹 ‘ 𝐷 ) → ∃ 𝑣 ∈ ( 𝐹 “ 𝐶 ) ( 𝐹 ‘ 𝑦 ) 𝑆 𝑣 ) ↔ ( 𝑤 𝑆 ( 𝐹 ‘ 𝐷 ) → ∃ 𝑣 ∈ ( 𝐹 “ 𝐶 ) 𝑤 𝑆 𝑣 ) ) ) |
| 46 |
45
|
cbvfo |
⊢ ( 𝐹 : 𝐴 –onto→ 𝐵 → ( ∀ 𝑦 ∈ 𝐴 ( ( 𝐹 ‘ 𝑦 ) 𝑆 ( 𝐹 ‘ 𝐷 ) → ∃ 𝑣 ∈ ( 𝐹 “ 𝐶 ) ( 𝐹 ‘ 𝑦 ) 𝑆 𝑣 ) ↔ ∀ 𝑤 ∈ 𝐵 ( 𝑤 𝑆 ( 𝐹 ‘ 𝐷 ) → ∃ 𝑣 ∈ ( 𝐹 “ 𝐶 ) 𝑤 𝑆 𝑣 ) ) ) |
| 47 |
14 41 46
|
3syl |
⊢ ( ( ( 𝐹 Isom 𝑅 , 𝑆 ( 𝐴 , 𝐵 ) ∧ 𝐶 ⊆ 𝐴 ) ∧ 𝐷 ∈ 𝐴 ) → ( ∀ 𝑦 ∈ 𝐴 ( ( 𝐹 ‘ 𝑦 ) 𝑆 ( 𝐹 ‘ 𝐷 ) → ∃ 𝑣 ∈ ( 𝐹 “ 𝐶 ) ( 𝐹 ‘ 𝑦 ) 𝑆 𝑣 ) ↔ ∀ 𝑤 ∈ 𝐵 ( 𝑤 𝑆 ( 𝐹 ‘ 𝐷 ) → ∃ 𝑣 ∈ ( 𝐹 “ 𝐶 ) 𝑤 𝑆 𝑣 ) ) ) |
| 48 |
40 47
|
bitrd |
⊢ ( ( ( 𝐹 Isom 𝑅 , 𝑆 ( 𝐴 , 𝐵 ) ∧ 𝐶 ⊆ 𝐴 ) ∧ 𝐷 ∈ 𝐴 ) → ( ∀ 𝑦 ∈ 𝐴 ( 𝑦 𝑅 𝐷 → ∃ 𝑧 ∈ 𝐶 𝑦 𝑅 𝑧 ) ↔ ∀ 𝑤 ∈ 𝐵 ( 𝑤 𝑆 ( 𝐹 ‘ 𝐷 ) → ∃ 𝑣 ∈ ( 𝐹 “ 𝐶 ) 𝑤 𝑆 𝑣 ) ) ) |
| 49 |
21 48
|
anbi12d |
⊢ ( ( ( 𝐹 Isom 𝑅 , 𝑆 ( 𝐴 , 𝐵 ) ∧ 𝐶 ⊆ 𝐴 ) ∧ 𝐷 ∈ 𝐴 ) → ( ( ∀ 𝑦 ∈ 𝐶 ¬ 𝐷 𝑅 𝑦 ∧ ∀ 𝑦 ∈ 𝐴 ( 𝑦 𝑅 𝐷 → ∃ 𝑧 ∈ 𝐶 𝑦 𝑅 𝑧 ) ) ↔ ( ∀ 𝑤 ∈ ( 𝐹 “ 𝐶 ) ¬ ( 𝐹 ‘ 𝐷 ) 𝑆 𝑤 ∧ ∀ 𝑤 ∈ 𝐵 ( 𝑤 𝑆 ( 𝐹 ‘ 𝐷 ) → ∃ 𝑣 ∈ ( 𝐹 “ 𝐶 ) 𝑤 𝑆 𝑣 ) ) ) ) |
| 50 |
3 49
|
sylan |
⊢ ( ( 𝜑 ∧ 𝐷 ∈ 𝐴 ) → ( ( ∀ 𝑦 ∈ 𝐶 ¬ 𝐷 𝑅 𝑦 ∧ ∀ 𝑦 ∈ 𝐴 ( 𝑦 𝑅 𝐷 → ∃ 𝑧 ∈ 𝐶 𝑦 𝑅 𝑧 ) ) ↔ ( ∀ 𝑤 ∈ ( 𝐹 “ 𝐶 ) ¬ ( 𝐹 ‘ 𝐷 ) 𝑆 𝑤 ∧ ∀ 𝑤 ∈ 𝐵 ( 𝑤 𝑆 ( 𝐹 ‘ 𝐷 ) → ∃ 𝑣 ∈ ( 𝐹 “ 𝐶 ) 𝑤 𝑆 𝑣 ) ) ) ) |