Step |
Hyp |
Ref |
Expression |
1 |
|
ltrelpr |
⊢ <P ⊆ ( P × P ) |
2 |
1
|
brel |
⊢ ( 𝑦 <P ∪ 𝐴 → ( 𝑦 ∈ P ∧ ∪ 𝐴 ∈ P ) ) |
3 |
2
|
simpld |
⊢ ( 𝑦 <P ∪ 𝐴 → 𝑦 ∈ P ) |
4 |
|
ralnex |
⊢ ( ∀ 𝑧 ∈ 𝐴 ¬ 𝑦 <P 𝑧 ↔ ¬ ∃ 𝑧 ∈ 𝐴 𝑦 <P 𝑧 ) |
5 |
|
ssel2 |
⊢ ( ( 𝐴 ⊆ P ∧ 𝑧 ∈ 𝐴 ) → 𝑧 ∈ P ) |
6 |
|
ltsopr |
⊢ <P Or P |
7 |
|
sotric |
⊢ ( ( <P Or P ∧ ( 𝑦 ∈ P ∧ 𝑧 ∈ P ) ) → ( 𝑦 <P 𝑧 ↔ ¬ ( 𝑦 = 𝑧 ∨ 𝑧 <P 𝑦 ) ) ) |
8 |
6 7
|
mpan |
⊢ ( ( 𝑦 ∈ P ∧ 𝑧 ∈ P ) → ( 𝑦 <P 𝑧 ↔ ¬ ( 𝑦 = 𝑧 ∨ 𝑧 <P 𝑦 ) ) ) |
9 |
8
|
con2bid |
⊢ ( ( 𝑦 ∈ P ∧ 𝑧 ∈ P ) → ( ( 𝑦 = 𝑧 ∨ 𝑧 <P 𝑦 ) ↔ ¬ 𝑦 <P 𝑧 ) ) |
10 |
9
|
ancoms |
⊢ ( ( 𝑧 ∈ P ∧ 𝑦 ∈ P ) → ( ( 𝑦 = 𝑧 ∨ 𝑧 <P 𝑦 ) ↔ ¬ 𝑦 <P 𝑧 ) ) |
11 |
|
ltprord |
⊢ ( ( 𝑧 ∈ P ∧ 𝑦 ∈ P ) → ( 𝑧 <P 𝑦 ↔ 𝑧 ⊊ 𝑦 ) ) |
12 |
11
|
orbi2d |
⊢ ( ( 𝑧 ∈ P ∧ 𝑦 ∈ P ) → ( ( 𝑦 = 𝑧 ∨ 𝑧 <P 𝑦 ) ↔ ( 𝑦 = 𝑧 ∨ 𝑧 ⊊ 𝑦 ) ) ) |
13 |
|
sspss |
⊢ ( 𝑧 ⊆ 𝑦 ↔ ( 𝑧 ⊊ 𝑦 ∨ 𝑧 = 𝑦 ) ) |
14 |
|
equcom |
⊢ ( 𝑧 = 𝑦 ↔ 𝑦 = 𝑧 ) |
15 |
14
|
orbi2i |
⊢ ( ( 𝑧 ⊊ 𝑦 ∨ 𝑧 = 𝑦 ) ↔ ( 𝑧 ⊊ 𝑦 ∨ 𝑦 = 𝑧 ) ) |
16 |
|
orcom |
⊢ ( ( 𝑧 ⊊ 𝑦 ∨ 𝑦 = 𝑧 ) ↔ ( 𝑦 = 𝑧 ∨ 𝑧 ⊊ 𝑦 ) ) |
17 |
13 15 16
|
3bitri |
⊢ ( 𝑧 ⊆ 𝑦 ↔ ( 𝑦 = 𝑧 ∨ 𝑧 ⊊ 𝑦 ) ) |
18 |
12 17
|
bitr4di |
⊢ ( ( 𝑧 ∈ P ∧ 𝑦 ∈ P ) → ( ( 𝑦 = 𝑧 ∨ 𝑧 <P 𝑦 ) ↔ 𝑧 ⊆ 𝑦 ) ) |
19 |
10 18
|
bitr3d |
⊢ ( ( 𝑧 ∈ P ∧ 𝑦 ∈ P ) → ( ¬ 𝑦 <P 𝑧 ↔ 𝑧 ⊆ 𝑦 ) ) |
20 |
5 19
|
sylan |
⊢ ( ( ( 𝐴 ⊆ P ∧ 𝑧 ∈ 𝐴 ) ∧ 𝑦 ∈ P ) → ( ¬ 𝑦 <P 𝑧 ↔ 𝑧 ⊆ 𝑦 ) ) |
21 |
20
|
an32s |
⊢ ( ( ( 𝐴 ⊆ P ∧ 𝑦 ∈ P ) ∧ 𝑧 ∈ 𝐴 ) → ( ¬ 𝑦 <P 𝑧 ↔ 𝑧 ⊆ 𝑦 ) ) |
22 |
21
|
ralbidva |
⊢ ( ( 𝐴 ⊆ P ∧ 𝑦 ∈ P ) → ( ∀ 𝑧 ∈ 𝐴 ¬ 𝑦 <P 𝑧 ↔ ∀ 𝑧 ∈ 𝐴 𝑧 ⊆ 𝑦 ) ) |
23 |
4 22
|
bitr3id |
⊢ ( ( 𝐴 ⊆ P ∧ 𝑦 ∈ P ) → ( ¬ ∃ 𝑧 ∈ 𝐴 𝑦 <P 𝑧 ↔ ∀ 𝑧 ∈ 𝐴 𝑧 ⊆ 𝑦 ) ) |
24 |
|
unissb |
⊢ ( ∪ 𝐴 ⊆ 𝑦 ↔ ∀ 𝑧 ∈ 𝐴 𝑧 ⊆ 𝑦 ) |
25 |
23 24
|
bitr4di |
⊢ ( ( 𝐴 ⊆ P ∧ 𝑦 ∈ P ) → ( ¬ ∃ 𝑧 ∈ 𝐴 𝑦 <P 𝑧 ↔ ∪ 𝐴 ⊆ 𝑦 ) ) |
26 |
|
ssnpss |
⊢ ( ∪ 𝐴 ⊆ 𝑦 → ¬ 𝑦 ⊊ ∪ 𝐴 ) |
27 |
|
ltprord |
⊢ ( ( 𝑦 ∈ P ∧ ∪ 𝐴 ∈ P ) → ( 𝑦 <P ∪ 𝐴 ↔ 𝑦 ⊊ ∪ 𝐴 ) ) |
28 |
27
|
biimpd |
⊢ ( ( 𝑦 ∈ P ∧ ∪ 𝐴 ∈ P ) → ( 𝑦 <P ∪ 𝐴 → 𝑦 ⊊ ∪ 𝐴 ) ) |
29 |
2 28
|
mpcom |
⊢ ( 𝑦 <P ∪ 𝐴 → 𝑦 ⊊ ∪ 𝐴 ) |
30 |
26 29
|
nsyl |
⊢ ( ∪ 𝐴 ⊆ 𝑦 → ¬ 𝑦 <P ∪ 𝐴 ) |
31 |
25 30
|
syl6bi |
⊢ ( ( 𝐴 ⊆ P ∧ 𝑦 ∈ P ) → ( ¬ ∃ 𝑧 ∈ 𝐴 𝑦 <P 𝑧 → ¬ 𝑦 <P ∪ 𝐴 ) ) |
32 |
31
|
con4d |
⊢ ( ( 𝐴 ⊆ P ∧ 𝑦 ∈ P ) → ( 𝑦 <P ∪ 𝐴 → ∃ 𝑧 ∈ 𝐴 𝑦 <P 𝑧 ) ) |
33 |
32
|
ex |
⊢ ( 𝐴 ⊆ P → ( 𝑦 ∈ P → ( 𝑦 <P ∪ 𝐴 → ∃ 𝑧 ∈ 𝐴 𝑦 <P 𝑧 ) ) ) |
34 |
3 33
|
syl5 |
⊢ ( 𝐴 ⊆ P → ( 𝑦 <P ∪ 𝐴 → ( 𝑦 <P ∪ 𝐴 → ∃ 𝑧 ∈ 𝐴 𝑦 <P 𝑧 ) ) ) |
35 |
34
|
pm2.43d |
⊢ ( 𝐴 ⊆ P → ( 𝑦 <P ∪ 𝐴 → ∃ 𝑧 ∈ 𝐴 𝑦 <P 𝑧 ) ) |
36 |
|
elssuni |
⊢ ( 𝑦 ∈ 𝐴 → 𝑦 ⊆ ∪ 𝐴 ) |
37 |
|
ssnpss |
⊢ ( 𝑦 ⊆ ∪ 𝐴 → ¬ ∪ 𝐴 ⊊ 𝑦 ) |
38 |
36 37
|
syl |
⊢ ( 𝑦 ∈ 𝐴 → ¬ ∪ 𝐴 ⊊ 𝑦 ) |
39 |
1
|
brel |
⊢ ( ∪ 𝐴 <P 𝑦 → ( ∪ 𝐴 ∈ P ∧ 𝑦 ∈ P ) ) |
40 |
|
ltprord |
⊢ ( ( ∪ 𝐴 ∈ P ∧ 𝑦 ∈ P ) → ( ∪ 𝐴 <P 𝑦 ↔ ∪ 𝐴 ⊊ 𝑦 ) ) |
41 |
40
|
biimpd |
⊢ ( ( ∪ 𝐴 ∈ P ∧ 𝑦 ∈ P ) → ( ∪ 𝐴 <P 𝑦 → ∪ 𝐴 ⊊ 𝑦 ) ) |
42 |
39 41
|
mpcom |
⊢ ( ∪ 𝐴 <P 𝑦 → ∪ 𝐴 ⊊ 𝑦 ) |
43 |
38 42
|
nsyl |
⊢ ( 𝑦 ∈ 𝐴 → ¬ ∪ 𝐴 <P 𝑦 ) |
44 |
35 43
|
jctil |
⊢ ( 𝐴 ⊆ P → ( ( 𝑦 ∈ 𝐴 → ¬ ∪ 𝐴 <P 𝑦 ) ∧ ( 𝑦 <P ∪ 𝐴 → ∃ 𝑧 ∈ 𝐴 𝑦 <P 𝑧 ) ) ) |