Metamath Proof Explorer


Theorem suplem2pr

Description: The union of a set of positive reals (if a positive real) is its supremum (the least upper bound). Part of Proposition 9-3.3 of Gleason p. 122. (Contributed by NM, 19-May-1996) (Revised by Mario Carneiro, 12-Jun-2013) (New usage is discouraged.)

Ref Expression
Assertion suplem2pr ( 𝐴P → ( ( 𝑦𝐴 → ¬ 𝐴 <P 𝑦 ) ∧ ( 𝑦 <P 𝐴 → ∃ 𝑧𝐴 𝑦 <P 𝑧 ) ) )

Proof

Step Hyp Ref Expression
1 ltrelpr <P ⊆ ( P × P )
2 1 brel ( 𝑦 <P 𝐴 → ( 𝑦P 𝐴P ) )
3 2 simpld ( 𝑦 <P 𝐴𝑦P )
4 ralnex ( ∀ 𝑧𝐴 ¬ 𝑦 <P 𝑧 ↔ ¬ ∃ 𝑧𝐴 𝑦 <P 𝑧 )
5 ssel2 ( ( 𝐴P𝑧𝐴 ) → 𝑧P )
6 ltsopr <P Or P
7 sotric ( ( <P Or P ∧ ( 𝑦P𝑧P ) ) → ( 𝑦 <P 𝑧 ↔ ¬ ( 𝑦 = 𝑧𝑧 <P 𝑦 ) ) )
8 6 7 mpan ( ( 𝑦P𝑧P ) → ( 𝑦 <P 𝑧 ↔ ¬ ( 𝑦 = 𝑧𝑧 <P 𝑦 ) ) )
9 8 con2bid ( ( 𝑦P𝑧P ) → ( ( 𝑦 = 𝑧𝑧 <P 𝑦 ) ↔ ¬ 𝑦 <P 𝑧 ) )
10 9 ancoms ( ( 𝑧P𝑦P ) → ( ( 𝑦 = 𝑧𝑧 <P 𝑦 ) ↔ ¬ 𝑦 <P 𝑧 ) )
11 ltprord ( ( 𝑧P𝑦P ) → ( 𝑧 <P 𝑦𝑧𝑦 ) )
12 11 orbi2d ( ( 𝑧P𝑦P ) → ( ( 𝑦 = 𝑧𝑧 <P 𝑦 ) ↔ ( 𝑦 = 𝑧𝑧𝑦 ) ) )
13 sspss ( 𝑧𝑦 ↔ ( 𝑧𝑦𝑧 = 𝑦 ) )
14 equcom ( 𝑧 = 𝑦𝑦 = 𝑧 )
15 14 orbi2i ( ( 𝑧𝑦𝑧 = 𝑦 ) ↔ ( 𝑧𝑦𝑦 = 𝑧 ) )
16 orcom ( ( 𝑧𝑦𝑦 = 𝑧 ) ↔ ( 𝑦 = 𝑧𝑧𝑦 ) )
17 13 15 16 3bitri ( 𝑧𝑦 ↔ ( 𝑦 = 𝑧𝑧𝑦 ) )
18 12 17 bitr4di ( ( 𝑧P𝑦P ) → ( ( 𝑦 = 𝑧𝑧 <P 𝑦 ) ↔ 𝑧𝑦 ) )
19 10 18 bitr3d ( ( 𝑧P𝑦P ) → ( ¬ 𝑦 <P 𝑧𝑧𝑦 ) )
20 5 19 sylan ( ( ( 𝐴P𝑧𝐴 ) ∧ 𝑦P ) → ( ¬ 𝑦 <P 𝑧𝑧𝑦 ) )
21 20 an32s ( ( ( 𝐴P𝑦P ) ∧ 𝑧𝐴 ) → ( ¬ 𝑦 <P 𝑧𝑧𝑦 ) )
22 21 ralbidva ( ( 𝐴P𝑦P ) → ( ∀ 𝑧𝐴 ¬ 𝑦 <P 𝑧 ↔ ∀ 𝑧𝐴 𝑧𝑦 ) )
23 4 22 bitr3id ( ( 𝐴P𝑦P ) → ( ¬ ∃ 𝑧𝐴 𝑦 <P 𝑧 ↔ ∀ 𝑧𝐴 𝑧𝑦 ) )
24 unissb ( 𝐴𝑦 ↔ ∀ 𝑧𝐴 𝑧𝑦 )
25 23 24 bitr4di ( ( 𝐴P𝑦P ) → ( ¬ ∃ 𝑧𝐴 𝑦 <P 𝑧 𝐴𝑦 ) )
26 ssnpss ( 𝐴𝑦 → ¬ 𝑦 𝐴 )
27 ltprord ( ( 𝑦P 𝐴P ) → ( 𝑦 <P 𝐴𝑦 𝐴 ) )
28 27 biimpd ( ( 𝑦P 𝐴P ) → ( 𝑦 <P 𝐴𝑦 𝐴 ) )
29 2 28 mpcom ( 𝑦 <P 𝐴𝑦 𝐴 )
30 26 29 nsyl ( 𝐴𝑦 → ¬ 𝑦 <P 𝐴 )
31 25 30 syl6bi ( ( 𝐴P𝑦P ) → ( ¬ ∃ 𝑧𝐴 𝑦 <P 𝑧 → ¬ 𝑦 <P 𝐴 ) )
32 31 con4d ( ( 𝐴P𝑦P ) → ( 𝑦 <P 𝐴 → ∃ 𝑧𝐴 𝑦 <P 𝑧 ) )
33 32 ex ( 𝐴P → ( 𝑦P → ( 𝑦 <P 𝐴 → ∃ 𝑧𝐴 𝑦 <P 𝑧 ) ) )
34 3 33 syl5 ( 𝐴P → ( 𝑦 <P 𝐴 → ( 𝑦 <P 𝐴 → ∃ 𝑧𝐴 𝑦 <P 𝑧 ) ) )
35 34 pm2.43d ( 𝐴P → ( 𝑦 <P 𝐴 → ∃ 𝑧𝐴 𝑦 <P 𝑧 ) )
36 elssuni ( 𝑦𝐴𝑦 𝐴 )
37 ssnpss ( 𝑦 𝐴 → ¬ 𝐴𝑦 )
38 36 37 syl ( 𝑦𝐴 → ¬ 𝐴𝑦 )
39 1 brel ( 𝐴 <P 𝑦 → ( 𝐴P𝑦P ) )
40 ltprord ( ( 𝐴P𝑦P ) → ( 𝐴 <P 𝑦 𝐴𝑦 ) )
41 40 biimpd ( ( 𝐴P𝑦P ) → ( 𝐴 <P 𝑦 𝐴𝑦 ) )
42 39 41 mpcom ( 𝐴 <P 𝑦 𝐴𝑦 )
43 38 42 nsyl ( 𝑦𝐴 → ¬ 𝐴 <P 𝑦 )
44 35 43 jctil ( 𝐴P → ( ( 𝑦𝐴 → ¬ 𝐴 <P 𝑦 ) ∧ ( 𝑦 <P 𝐴 → ∃ 𝑧𝐴 𝑦 <P 𝑧 ) ) )