Metamath Proof Explorer


Theorem suplesup2

Description: If any element of A is less than or equal to an element in B , then the supremum of A is less than or equal to the supremum of B . (Contributed by Glauco Siliprandi, 8-Apr-2021)

Ref Expression
Hypotheses suplesup2.a ( 𝜑𝐴 ⊆ ℝ* )
suplesup2.b ( 𝜑𝐵 ⊆ ℝ* )
suplesup2.c ( ( 𝜑𝑥𝐴 ) → ∃ 𝑦𝐵 𝑥𝑦 )
Assertion suplesup2 ( 𝜑 → sup ( 𝐴 , ℝ* , < ) ≤ sup ( 𝐵 , ℝ* , < ) )

Proof

Step Hyp Ref Expression
1 suplesup2.a ( 𝜑𝐴 ⊆ ℝ* )
2 suplesup2.b ( 𝜑𝐵 ⊆ ℝ* )
3 suplesup2.c ( ( 𝜑𝑥𝐴 ) → ∃ 𝑦𝐵 𝑥𝑦 )
4 1 sselda ( ( 𝜑𝑥𝐴 ) → 𝑥 ∈ ℝ* )
5 4 3ad2ant1 ( ( ( 𝜑𝑥𝐴 ) ∧ 𝑦𝐵𝑥𝑦 ) → 𝑥 ∈ ℝ* )
6 simp1l ( ( ( 𝜑𝑥𝐴 ) ∧ 𝑦𝐵𝑥𝑦 ) → 𝜑 )
7 simp2 ( ( ( 𝜑𝑥𝐴 ) ∧ 𝑦𝐵𝑥𝑦 ) → 𝑦𝐵 )
8 2 sselda ( ( 𝜑𝑦𝐵 ) → 𝑦 ∈ ℝ* )
9 6 7 8 syl2anc ( ( ( 𝜑𝑥𝐴 ) ∧ 𝑦𝐵𝑥𝑦 ) → 𝑦 ∈ ℝ* )
10 supxrcl ( 𝐵 ⊆ ℝ* → sup ( 𝐵 , ℝ* , < ) ∈ ℝ* )
11 2 10 syl ( 𝜑 → sup ( 𝐵 , ℝ* , < ) ∈ ℝ* )
12 6 11 syl ( ( ( 𝜑𝑥𝐴 ) ∧ 𝑦𝐵𝑥𝑦 ) → sup ( 𝐵 , ℝ* , < ) ∈ ℝ* )
13 simp3 ( ( ( 𝜑𝑥𝐴 ) ∧ 𝑦𝐵𝑥𝑦 ) → 𝑥𝑦 )
14 2 adantr ( ( 𝜑𝑦𝐵 ) → 𝐵 ⊆ ℝ* )
15 simpr ( ( 𝜑𝑦𝐵 ) → 𝑦𝐵 )
16 supxrub ( ( 𝐵 ⊆ ℝ*𝑦𝐵 ) → 𝑦 ≤ sup ( 𝐵 , ℝ* , < ) )
17 14 15 16 syl2anc ( ( 𝜑𝑦𝐵 ) → 𝑦 ≤ sup ( 𝐵 , ℝ* , < ) )
18 6 7 17 syl2anc ( ( ( 𝜑𝑥𝐴 ) ∧ 𝑦𝐵𝑥𝑦 ) → 𝑦 ≤ sup ( 𝐵 , ℝ* , < ) )
19 5 9 12 13 18 xrletrd ( ( ( 𝜑𝑥𝐴 ) ∧ 𝑦𝐵𝑥𝑦 ) → 𝑥 ≤ sup ( 𝐵 , ℝ* , < ) )
20 19 3exp ( ( 𝜑𝑥𝐴 ) → ( 𝑦𝐵 → ( 𝑥𝑦𝑥 ≤ sup ( 𝐵 , ℝ* , < ) ) ) )
21 20 rexlimdv ( ( 𝜑𝑥𝐴 ) → ( ∃ 𝑦𝐵 𝑥𝑦𝑥 ≤ sup ( 𝐵 , ℝ* , < ) ) )
22 3 21 mpd ( ( 𝜑𝑥𝐴 ) → 𝑥 ≤ sup ( 𝐵 , ℝ* , < ) )
23 22 ralrimiva ( 𝜑 → ∀ 𝑥𝐴 𝑥 ≤ sup ( 𝐵 , ℝ* , < ) )
24 supxrleub ( ( 𝐴 ⊆ ℝ* ∧ sup ( 𝐵 , ℝ* , < ) ∈ ℝ* ) → ( sup ( 𝐴 , ℝ* , < ) ≤ sup ( 𝐵 , ℝ* , < ) ↔ ∀ 𝑥𝐴 𝑥 ≤ sup ( 𝐵 , ℝ* , < ) ) )
25 1 11 24 syl2anc ( 𝜑 → ( sup ( 𝐴 , ℝ* , < ) ≤ sup ( 𝐵 , ℝ* , < ) ↔ ∀ 𝑥𝐴 𝑥 ≤ sup ( 𝐵 , ℝ* , < ) ) )
26 23 25 mpbird ( 𝜑 → sup ( 𝐴 , ℝ* , < ) ≤ sup ( 𝐵 , ℝ* , < ) )