Step |
Hyp |
Ref |
Expression |
1 |
|
supmo.1 |
⊢ ( 𝜑 → 𝑅 Or 𝐴 ) |
2 |
|
supcl.2 |
⊢ ( 𝜑 → ∃ 𝑥 ∈ 𝐴 ( ∀ 𝑦 ∈ 𝐵 ¬ 𝑥 𝑅 𝑦 ∧ ∀ 𝑦 ∈ 𝐴 ( 𝑦 𝑅 𝑥 → ∃ 𝑧 ∈ 𝐵 𝑦 𝑅 𝑧 ) ) ) |
3 |
|
suplub2.3 |
⊢ ( 𝜑 → 𝐵 ⊆ 𝐴 ) |
4 |
1 2
|
suplub |
⊢ ( 𝜑 → ( ( 𝐶 ∈ 𝐴 ∧ 𝐶 𝑅 sup ( 𝐵 , 𝐴 , 𝑅 ) ) → ∃ 𝑧 ∈ 𝐵 𝐶 𝑅 𝑧 ) ) |
5 |
4
|
expdimp |
⊢ ( ( 𝜑 ∧ 𝐶 ∈ 𝐴 ) → ( 𝐶 𝑅 sup ( 𝐵 , 𝐴 , 𝑅 ) → ∃ 𝑧 ∈ 𝐵 𝐶 𝑅 𝑧 ) ) |
6 |
|
breq2 |
⊢ ( 𝑧 = 𝑤 → ( 𝐶 𝑅 𝑧 ↔ 𝐶 𝑅 𝑤 ) ) |
7 |
6
|
cbvrexvw |
⊢ ( ∃ 𝑧 ∈ 𝐵 𝐶 𝑅 𝑧 ↔ ∃ 𝑤 ∈ 𝐵 𝐶 𝑅 𝑤 ) |
8 |
|
breq2 |
⊢ ( sup ( 𝐵 , 𝐴 , 𝑅 ) = 𝑤 → ( 𝐶 𝑅 sup ( 𝐵 , 𝐴 , 𝑅 ) ↔ 𝐶 𝑅 𝑤 ) ) |
9 |
8
|
biimprd |
⊢ ( sup ( 𝐵 , 𝐴 , 𝑅 ) = 𝑤 → ( 𝐶 𝑅 𝑤 → 𝐶 𝑅 sup ( 𝐵 , 𝐴 , 𝑅 ) ) ) |
10 |
9
|
a1i |
⊢ ( ( ( 𝜑 ∧ 𝐶 ∈ 𝐴 ) ∧ 𝑤 ∈ 𝐵 ) → ( sup ( 𝐵 , 𝐴 , 𝑅 ) = 𝑤 → ( 𝐶 𝑅 𝑤 → 𝐶 𝑅 sup ( 𝐵 , 𝐴 , 𝑅 ) ) ) ) |
11 |
1
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝐶 ∈ 𝐴 ) ∧ 𝑤 ∈ 𝐵 ) → 𝑅 Or 𝐴 ) |
12 |
|
simplr |
⊢ ( ( ( 𝜑 ∧ 𝐶 ∈ 𝐴 ) ∧ 𝑤 ∈ 𝐵 ) → 𝐶 ∈ 𝐴 ) |
13 |
3
|
adantr |
⊢ ( ( 𝜑 ∧ 𝐶 ∈ 𝐴 ) → 𝐵 ⊆ 𝐴 ) |
14 |
13
|
sselda |
⊢ ( ( ( 𝜑 ∧ 𝐶 ∈ 𝐴 ) ∧ 𝑤 ∈ 𝐵 ) → 𝑤 ∈ 𝐴 ) |
15 |
1 2
|
supcl |
⊢ ( 𝜑 → sup ( 𝐵 , 𝐴 , 𝑅 ) ∈ 𝐴 ) |
16 |
15
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝐶 ∈ 𝐴 ) ∧ 𝑤 ∈ 𝐵 ) → sup ( 𝐵 , 𝐴 , 𝑅 ) ∈ 𝐴 ) |
17 |
|
sotr |
⊢ ( ( 𝑅 Or 𝐴 ∧ ( 𝐶 ∈ 𝐴 ∧ 𝑤 ∈ 𝐴 ∧ sup ( 𝐵 , 𝐴 , 𝑅 ) ∈ 𝐴 ) ) → ( ( 𝐶 𝑅 𝑤 ∧ 𝑤 𝑅 sup ( 𝐵 , 𝐴 , 𝑅 ) ) → 𝐶 𝑅 sup ( 𝐵 , 𝐴 , 𝑅 ) ) ) |
18 |
11 12 14 16 17
|
syl13anc |
⊢ ( ( ( 𝜑 ∧ 𝐶 ∈ 𝐴 ) ∧ 𝑤 ∈ 𝐵 ) → ( ( 𝐶 𝑅 𝑤 ∧ 𝑤 𝑅 sup ( 𝐵 , 𝐴 , 𝑅 ) ) → 𝐶 𝑅 sup ( 𝐵 , 𝐴 , 𝑅 ) ) ) |
19 |
18
|
expcomd |
⊢ ( ( ( 𝜑 ∧ 𝐶 ∈ 𝐴 ) ∧ 𝑤 ∈ 𝐵 ) → ( 𝑤 𝑅 sup ( 𝐵 , 𝐴 , 𝑅 ) → ( 𝐶 𝑅 𝑤 → 𝐶 𝑅 sup ( 𝐵 , 𝐴 , 𝑅 ) ) ) ) |
20 |
1 2
|
supub |
⊢ ( 𝜑 → ( 𝑤 ∈ 𝐵 → ¬ sup ( 𝐵 , 𝐴 , 𝑅 ) 𝑅 𝑤 ) ) |
21 |
20
|
adantr |
⊢ ( ( 𝜑 ∧ 𝐶 ∈ 𝐴 ) → ( 𝑤 ∈ 𝐵 → ¬ sup ( 𝐵 , 𝐴 , 𝑅 ) 𝑅 𝑤 ) ) |
22 |
21
|
imp |
⊢ ( ( ( 𝜑 ∧ 𝐶 ∈ 𝐴 ) ∧ 𝑤 ∈ 𝐵 ) → ¬ sup ( 𝐵 , 𝐴 , 𝑅 ) 𝑅 𝑤 ) |
23 |
|
sotric |
⊢ ( ( 𝑅 Or 𝐴 ∧ ( sup ( 𝐵 , 𝐴 , 𝑅 ) ∈ 𝐴 ∧ 𝑤 ∈ 𝐴 ) ) → ( sup ( 𝐵 , 𝐴 , 𝑅 ) 𝑅 𝑤 ↔ ¬ ( sup ( 𝐵 , 𝐴 , 𝑅 ) = 𝑤 ∨ 𝑤 𝑅 sup ( 𝐵 , 𝐴 , 𝑅 ) ) ) ) |
24 |
11 16 14 23
|
syl12anc |
⊢ ( ( ( 𝜑 ∧ 𝐶 ∈ 𝐴 ) ∧ 𝑤 ∈ 𝐵 ) → ( sup ( 𝐵 , 𝐴 , 𝑅 ) 𝑅 𝑤 ↔ ¬ ( sup ( 𝐵 , 𝐴 , 𝑅 ) = 𝑤 ∨ 𝑤 𝑅 sup ( 𝐵 , 𝐴 , 𝑅 ) ) ) ) |
25 |
24
|
con2bid |
⊢ ( ( ( 𝜑 ∧ 𝐶 ∈ 𝐴 ) ∧ 𝑤 ∈ 𝐵 ) → ( ( sup ( 𝐵 , 𝐴 , 𝑅 ) = 𝑤 ∨ 𝑤 𝑅 sup ( 𝐵 , 𝐴 , 𝑅 ) ) ↔ ¬ sup ( 𝐵 , 𝐴 , 𝑅 ) 𝑅 𝑤 ) ) |
26 |
22 25
|
mpbird |
⊢ ( ( ( 𝜑 ∧ 𝐶 ∈ 𝐴 ) ∧ 𝑤 ∈ 𝐵 ) → ( sup ( 𝐵 , 𝐴 , 𝑅 ) = 𝑤 ∨ 𝑤 𝑅 sup ( 𝐵 , 𝐴 , 𝑅 ) ) ) |
27 |
10 19 26
|
mpjaod |
⊢ ( ( ( 𝜑 ∧ 𝐶 ∈ 𝐴 ) ∧ 𝑤 ∈ 𝐵 ) → ( 𝐶 𝑅 𝑤 → 𝐶 𝑅 sup ( 𝐵 , 𝐴 , 𝑅 ) ) ) |
28 |
27
|
rexlimdva |
⊢ ( ( 𝜑 ∧ 𝐶 ∈ 𝐴 ) → ( ∃ 𝑤 ∈ 𝐵 𝐶 𝑅 𝑤 → 𝐶 𝑅 sup ( 𝐵 , 𝐴 , 𝑅 ) ) ) |
29 |
7 28
|
syl5bi |
⊢ ( ( 𝜑 ∧ 𝐶 ∈ 𝐴 ) → ( ∃ 𝑧 ∈ 𝐵 𝐶 𝑅 𝑧 → 𝐶 𝑅 sup ( 𝐵 , 𝐴 , 𝑅 ) ) ) |
30 |
5 29
|
impbid |
⊢ ( ( 𝜑 ∧ 𝐶 ∈ 𝐴 ) → ( 𝐶 𝑅 sup ( 𝐵 , 𝐴 , 𝑅 ) ↔ ∃ 𝑧 ∈ 𝐵 𝐶 𝑅 𝑧 ) ) |