| Step | Hyp | Ref | Expression | 
						
							| 1 |  | ssrab2 | ⊢ { 𝑧  ∈  ℝ  ∣  - 𝑧  ∈  𝐴 }  ⊆  ℝ | 
						
							| 2 |  | negn0 | ⊢ ( ( 𝐴  ⊆  ℝ  ∧  𝐴  ≠  ∅ )  →  { 𝑧  ∈  ℝ  ∣  - 𝑧  ∈  𝐴 }  ≠  ∅ ) | 
						
							| 3 |  | ublbneg | ⊢ ( ∃ 𝑥  ∈  ℝ ∀ 𝑦  ∈  𝐴 𝑦  ≤  𝑥  →  ∃ 𝑥  ∈  ℝ ∀ 𝑦  ∈  { 𝑧  ∈  ℝ  ∣  - 𝑧  ∈  𝐴 } 𝑥  ≤  𝑦 ) | 
						
							| 4 |  | infrenegsup | ⊢ ( ( { 𝑧  ∈  ℝ  ∣  - 𝑧  ∈  𝐴 }  ⊆  ℝ  ∧  { 𝑧  ∈  ℝ  ∣  - 𝑧  ∈  𝐴 }  ≠  ∅  ∧  ∃ 𝑥  ∈  ℝ ∀ 𝑦  ∈  { 𝑧  ∈  ℝ  ∣  - 𝑧  ∈  𝐴 } 𝑥  ≤  𝑦 )  →  inf ( { 𝑧  ∈  ℝ  ∣  - 𝑧  ∈  𝐴 } ,  ℝ ,   <  )  =  - sup ( { 𝑤  ∈  ℝ  ∣  - 𝑤  ∈  { 𝑧  ∈  ℝ  ∣  - 𝑧  ∈  𝐴 } } ,  ℝ ,   <  ) ) | 
						
							| 5 | 1 2 3 4 | mp3an3an | ⊢ ( ( ( 𝐴  ⊆  ℝ  ∧  𝐴  ≠  ∅ )  ∧  ∃ 𝑥  ∈  ℝ ∀ 𝑦  ∈  𝐴 𝑦  ≤  𝑥 )  →  inf ( { 𝑧  ∈  ℝ  ∣  - 𝑧  ∈  𝐴 } ,  ℝ ,   <  )  =  - sup ( { 𝑤  ∈  ℝ  ∣  - 𝑤  ∈  { 𝑧  ∈  ℝ  ∣  - 𝑧  ∈  𝐴 } } ,  ℝ ,   <  ) ) | 
						
							| 6 | 5 | 3impa | ⊢ ( ( 𝐴  ⊆  ℝ  ∧  𝐴  ≠  ∅  ∧  ∃ 𝑥  ∈  ℝ ∀ 𝑦  ∈  𝐴 𝑦  ≤  𝑥 )  →  inf ( { 𝑧  ∈  ℝ  ∣  - 𝑧  ∈  𝐴 } ,  ℝ ,   <  )  =  - sup ( { 𝑤  ∈  ℝ  ∣  - 𝑤  ∈  { 𝑧  ∈  ℝ  ∣  - 𝑧  ∈  𝐴 } } ,  ℝ ,   <  ) ) | 
						
							| 7 |  | elrabi | ⊢ ( 𝑥  ∈  { 𝑤  ∈  ℝ  ∣  - 𝑤  ∈  { 𝑧  ∈  ℝ  ∣  - 𝑧  ∈  𝐴 } }  →  𝑥  ∈  ℝ ) | 
						
							| 8 | 7 | adantl | ⊢ ( ( 𝐴  ⊆  ℝ  ∧  𝑥  ∈  { 𝑤  ∈  ℝ  ∣  - 𝑤  ∈  { 𝑧  ∈  ℝ  ∣  - 𝑧  ∈  𝐴 } } )  →  𝑥  ∈  ℝ ) | 
						
							| 9 |  | ssel2 | ⊢ ( ( 𝐴  ⊆  ℝ  ∧  𝑥  ∈  𝐴 )  →  𝑥  ∈  ℝ ) | 
						
							| 10 |  | negeq | ⊢ ( 𝑤  =  𝑥  →  - 𝑤  =  - 𝑥 ) | 
						
							| 11 | 10 | eleq1d | ⊢ ( 𝑤  =  𝑥  →  ( - 𝑤  ∈  { 𝑧  ∈  ℝ  ∣  - 𝑧  ∈  𝐴 }  ↔  - 𝑥  ∈  { 𝑧  ∈  ℝ  ∣  - 𝑧  ∈  𝐴 } ) ) | 
						
							| 12 | 11 | elrab3 | ⊢ ( 𝑥  ∈  ℝ  →  ( 𝑥  ∈  { 𝑤  ∈  ℝ  ∣  - 𝑤  ∈  { 𝑧  ∈  ℝ  ∣  - 𝑧  ∈  𝐴 } }  ↔  - 𝑥  ∈  { 𝑧  ∈  ℝ  ∣  - 𝑧  ∈  𝐴 } ) ) | 
						
							| 13 |  | renegcl | ⊢ ( 𝑥  ∈  ℝ  →  - 𝑥  ∈  ℝ ) | 
						
							| 14 |  | negeq | ⊢ ( 𝑧  =  - 𝑥  →  - 𝑧  =  - - 𝑥 ) | 
						
							| 15 | 14 | eleq1d | ⊢ ( 𝑧  =  - 𝑥  →  ( - 𝑧  ∈  𝐴  ↔  - - 𝑥  ∈  𝐴 ) ) | 
						
							| 16 | 15 | elrab3 | ⊢ ( - 𝑥  ∈  ℝ  →  ( - 𝑥  ∈  { 𝑧  ∈  ℝ  ∣  - 𝑧  ∈  𝐴 }  ↔  - - 𝑥  ∈  𝐴 ) ) | 
						
							| 17 | 13 16 | syl | ⊢ ( 𝑥  ∈  ℝ  →  ( - 𝑥  ∈  { 𝑧  ∈  ℝ  ∣  - 𝑧  ∈  𝐴 }  ↔  - - 𝑥  ∈  𝐴 ) ) | 
						
							| 18 |  | recn | ⊢ ( 𝑥  ∈  ℝ  →  𝑥  ∈  ℂ ) | 
						
							| 19 | 18 | negnegd | ⊢ ( 𝑥  ∈  ℝ  →  - - 𝑥  =  𝑥 ) | 
						
							| 20 | 19 | eleq1d | ⊢ ( 𝑥  ∈  ℝ  →  ( - - 𝑥  ∈  𝐴  ↔  𝑥  ∈  𝐴 ) ) | 
						
							| 21 | 12 17 20 | 3bitrd | ⊢ ( 𝑥  ∈  ℝ  →  ( 𝑥  ∈  { 𝑤  ∈  ℝ  ∣  - 𝑤  ∈  { 𝑧  ∈  ℝ  ∣  - 𝑧  ∈  𝐴 } }  ↔  𝑥  ∈  𝐴 ) ) | 
						
							| 22 | 21 | adantl | ⊢ ( ( 𝐴  ⊆  ℝ  ∧  𝑥  ∈  ℝ )  →  ( 𝑥  ∈  { 𝑤  ∈  ℝ  ∣  - 𝑤  ∈  { 𝑧  ∈  ℝ  ∣  - 𝑧  ∈  𝐴 } }  ↔  𝑥  ∈  𝐴 ) ) | 
						
							| 23 | 8 9 22 | eqrdav | ⊢ ( 𝐴  ⊆  ℝ  →  { 𝑤  ∈  ℝ  ∣  - 𝑤  ∈  { 𝑧  ∈  ℝ  ∣  - 𝑧  ∈  𝐴 } }  =  𝐴 ) | 
						
							| 24 | 23 | supeq1d | ⊢ ( 𝐴  ⊆  ℝ  →  sup ( { 𝑤  ∈  ℝ  ∣  - 𝑤  ∈  { 𝑧  ∈  ℝ  ∣  - 𝑧  ∈  𝐴 } } ,  ℝ ,   <  )  =  sup ( 𝐴 ,  ℝ ,   <  ) ) | 
						
							| 25 | 24 | 3ad2ant1 | ⊢ ( ( 𝐴  ⊆  ℝ  ∧  𝐴  ≠  ∅  ∧  ∃ 𝑥  ∈  ℝ ∀ 𝑦  ∈  𝐴 𝑦  ≤  𝑥 )  →  sup ( { 𝑤  ∈  ℝ  ∣  - 𝑤  ∈  { 𝑧  ∈  ℝ  ∣  - 𝑧  ∈  𝐴 } } ,  ℝ ,   <  )  =  sup ( 𝐴 ,  ℝ ,   <  ) ) | 
						
							| 26 | 25 | negeqd | ⊢ ( ( 𝐴  ⊆  ℝ  ∧  𝐴  ≠  ∅  ∧  ∃ 𝑥  ∈  ℝ ∀ 𝑦  ∈  𝐴 𝑦  ≤  𝑥 )  →  - sup ( { 𝑤  ∈  ℝ  ∣  - 𝑤  ∈  { 𝑧  ∈  ℝ  ∣  - 𝑧  ∈  𝐴 } } ,  ℝ ,   <  )  =  - sup ( 𝐴 ,  ℝ ,   <  ) ) | 
						
							| 27 | 6 26 | eqtrd | ⊢ ( ( 𝐴  ⊆  ℝ  ∧  𝐴  ≠  ∅  ∧  ∃ 𝑥  ∈  ℝ ∀ 𝑦  ∈  𝐴 𝑦  ≤  𝑥 )  →  inf ( { 𝑧  ∈  ℝ  ∣  - 𝑧  ∈  𝐴 } ,  ℝ ,   <  )  =  - sup ( 𝐴 ,  ℝ ,   <  ) ) | 
						
							| 28 |  | infrecl | ⊢ ( ( { 𝑧  ∈  ℝ  ∣  - 𝑧  ∈  𝐴 }  ⊆  ℝ  ∧  { 𝑧  ∈  ℝ  ∣  - 𝑧  ∈  𝐴 }  ≠  ∅  ∧  ∃ 𝑥  ∈  ℝ ∀ 𝑦  ∈  { 𝑧  ∈  ℝ  ∣  - 𝑧  ∈  𝐴 } 𝑥  ≤  𝑦 )  →  inf ( { 𝑧  ∈  ℝ  ∣  - 𝑧  ∈  𝐴 } ,  ℝ ,   <  )  ∈  ℝ ) | 
						
							| 29 | 1 2 3 28 | mp3an3an | ⊢ ( ( ( 𝐴  ⊆  ℝ  ∧  𝐴  ≠  ∅ )  ∧  ∃ 𝑥  ∈  ℝ ∀ 𝑦  ∈  𝐴 𝑦  ≤  𝑥 )  →  inf ( { 𝑧  ∈  ℝ  ∣  - 𝑧  ∈  𝐴 } ,  ℝ ,   <  )  ∈  ℝ ) | 
						
							| 30 | 29 | 3impa | ⊢ ( ( 𝐴  ⊆  ℝ  ∧  𝐴  ≠  ∅  ∧  ∃ 𝑥  ∈  ℝ ∀ 𝑦  ∈  𝐴 𝑦  ≤  𝑥 )  →  inf ( { 𝑧  ∈  ℝ  ∣  - 𝑧  ∈  𝐴 } ,  ℝ ,   <  )  ∈  ℝ ) | 
						
							| 31 |  | suprcl | ⊢ ( ( 𝐴  ⊆  ℝ  ∧  𝐴  ≠  ∅  ∧  ∃ 𝑥  ∈  ℝ ∀ 𝑦  ∈  𝐴 𝑦  ≤  𝑥 )  →  sup ( 𝐴 ,  ℝ ,   <  )  ∈  ℝ ) | 
						
							| 32 |  | recn | ⊢ ( inf ( { 𝑧  ∈  ℝ  ∣  - 𝑧  ∈  𝐴 } ,  ℝ ,   <  )  ∈  ℝ  →  inf ( { 𝑧  ∈  ℝ  ∣  - 𝑧  ∈  𝐴 } ,  ℝ ,   <  )  ∈  ℂ ) | 
						
							| 33 |  | recn | ⊢ ( sup ( 𝐴 ,  ℝ ,   <  )  ∈  ℝ  →  sup ( 𝐴 ,  ℝ ,   <  )  ∈  ℂ ) | 
						
							| 34 |  | negcon2 | ⊢ ( ( inf ( { 𝑧  ∈  ℝ  ∣  - 𝑧  ∈  𝐴 } ,  ℝ ,   <  )  ∈  ℂ  ∧  sup ( 𝐴 ,  ℝ ,   <  )  ∈  ℂ )  →  ( inf ( { 𝑧  ∈  ℝ  ∣  - 𝑧  ∈  𝐴 } ,  ℝ ,   <  )  =  - sup ( 𝐴 ,  ℝ ,   <  )  ↔  sup ( 𝐴 ,  ℝ ,   <  )  =  - inf ( { 𝑧  ∈  ℝ  ∣  - 𝑧  ∈  𝐴 } ,  ℝ ,   <  ) ) ) | 
						
							| 35 | 32 33 34 | syl2an | ⊢ ( ( inf ( { 𝑧  ∈  ℝ  ∣  - 𝑧  ∈  𝐴 } ,  ℝ ,   <  )  ∈  ℝ  ∧  sup ( 𝐴 ,  ℝ ,   <  )  ∈  ℝ )  →  ( inf ( { 𝑧  ∈  ℝ  ∣  - 𝑧  ∈  𝐴 } ,  ℝ ,   <  )  =  - sup ( 𝐴 ,  ℝ ,   <  )  ↔  sup ( 𝐴 ,  ℝ ,   <  )  =  - inf ( { 𝑧  ∈  ℝ  ∣  - 𝑧  ∈  𝐴 } ,  ℝ ,   <  ) ) ) | 
						
							| 36 | 30 31 35 | syl2anc | ⊢ ( ( 𝐴  ⊆  ℝ  ∧  𝐴  ≠  ∅  ∧  ∃ 𝑥  ∈  ℝ ∀ 𝑦  ∈  𝐴 𝑦  ≤  𝑥 )  →  ( inf ( { 𝑧  ∈  ℝ  ∣  - 𝑧  ∈  𝐴 } ,  ℝ ,   <  )  =  - sup ( 𝐴 ,  ℝ ,   <  )  ↔  sup ( 𝐴 ,  ℝ ,   <  )  =  - inf ( { 𝑧  ∈  ℝ  ∣  - 𝑧  ∈  𝐴 } ,  ℝ ,   <  ) ) ) | 
						
							| 37 | 27 36 | mpbid | ⊢ ( ( 𝐴  ⊆  ℝ  ∧  𝐴  ≠  ∅  ∧  ∃ 𝑥  ∈  ℝ ∀ 𝑦  ∈  𝐴 𝑦  ≤  𝑥 )  →  sup ( 𝐴 ,  ℝ ,   <  )  =  - inf ( { 𝑧  ∈  ℝ  ∣  - 𝑧  ∈  𝐴 } ,  ℝ ,   <  ) ) |