Metamath Proof Explorer


Theorem supminfrnmpt

Description: The indexed supremum of a bounded-above set of reals is the negation of the indexed infimum of that set's image under negation. (Contributed by Glauco Siliprandi, 2-Jan-2022)

Ref Expression
Hypotheses supminfrnmpt.x 𝑥 𝜑
supminfrnmpt.a ( 𝜑𝐴 ≠ ∅ )
supminfrnmpt.b ( ( 𝜑𝑥𝐴 ) → 𝐵 ∈ ℝ )
supminfrnmpt.y ( 𝜑 → ∃ 𝑦 ∈ ℝ ∀ 𝑥𝐴 𝐵𝑦 )
Assertion supminfrnmpt ( 𝜑 → sup ( ran ( 𝑥𝐴𝐵 ) , ℝ , < ) = - inf ( ran ( 𝑥𝐴 ↦ - 𝐵 ) , ℝ , < ) )

Proof

Step Hyp Ref Expression
1 supminfrnmpt.x 𝑥 𝜑
2 supminfrnmpt.a ( 𝜑𝐴 ≠ ∅ )
3 supminfrnmpt.b ( ( 𝜑𝑥𝐴 ) → 𝐵 ∈ ℝ )
4 supminfrnmpt.y ( 𝜑 → ∃ 𝑦 ∈ ℝ ∀ 𝑥𝐴 𝐵𝑦 )
5 eqid ( 𝑥𝐴𝐵 ) = ( 𝑥𝐴𝐵 )
6 1 5 3 rnmptssd ( 𝜑 → ran ( 𝑥𝐴𝐵 ) ⊆ ℝ )
7 1 3 5 2 rnmptn0 ( 𝜑 → ran ( 𝑥𝐴𝐵 ) ≠ ∅ )
8 1 3 rnmptbd ( 𝜑 → ( ∃ 𝑦 ∈ ℝ ∀ 𝑥𝐴 𝐵𝑦 ↔ ∃ 𝑦 ∈ ℝ ∀ 𝑧 ∈ ran ( 𝑥𝐴𝐵 ) 𝑧𝑦 ) )
9 4 8 mpbid ( 𝜑 → ∃ 𝑦 ∈ ℝ ∀ 𝑧 ∈ ran ( 𝑥𝐴𝐵 ) 𝑧𝑦 )
10 supminf ( ( ran ( 𝑥𝐴𝐵 ) ⊆ ℝ ∧ ran ( 𝑥𝐴𝐵 ) ≠ ∅ ∧ ∃ 𝑦 ∈ ℝ ∀ 𝑧 ∈ ran ( 𝑥𝐴𝐵 ) 𝑧𝑦 ) → sup ( ran ( 𝑥𝐴𝐵 ) , ℝ , < ) = - inf ( { 𝑤 ∈ ℝ ∣ - 𝑤 ∈ ran ( 𝑥𝐴𝐵 ) } , ℝ , < ) )
11 6 7 9 10 syl3anc ( 𝜑 → sup ( ran ( 𝑥𝐴𝐵 ) , ℝ , < ) = - inf ( { 𝑤 ∈ ℝ ∣ - 𝑤 ∈ ran ( 𝑥𝐴𝐵 ) } , ℝ , < ) )
12 eqid ( 𝑥𝐴 ↦ - 𝐵 ) = ( 𝑥𝐴 ↦ - 𝐵 )
13 simpr ( ( 𝑤 ∈ ℝ ∧ - 𝑤 ∈ ran ( 𝑥𝐴𝐵 ) ) → - 𝑤 ∈ ran ( 𝑥𝐴𝐵 ) )
14 renegcl ( 𝑤 ∈ ℝ → - 𝑤 ∈ ℝ )
15 5 elrnmpt ( - 𝑤 ∈ ℝ → ( - 𝑤 ∈ ran ( 𝑥𝐴𝐵 ) ↔ ∃ 𝑥𝐴 - 𝑤 = 𝐵 ) )
16 14 15 syl ( 𝑤 ∈ ℝ → ( - 𝑤 ∈ ran ( 𝑥𝐴𝐵 ) ↔ ∃ 𝑥𝐴 - 𝑤 = 𝐵 ) )
17 16 adantr ( ( 𝑤 ∈ ℝ ∧ - 𝑤 ∈ ran ( 𝑥𝐴𝐵 ) ) → ( - 𝑤 ∈ ran ( 𝑥𝐴𝐵 ) ↔ ∃ 𝑥𝐴 - 𝑤 = 𝐵 ) )
18 13 17 mpbid ( ( 𝑤 ∈ ℝ ∧ - 𝑤 ∈ ran ( 𝑥𝐴𝐵 ) ) → ∃ 𝑥𝐴 - 𝑤 = 𝐵 )
19 18 adantll ( ( ( 𝜑𝑤 ∈ ℝ ) ∧ - 𝑤 ∈ ran ( 𝑥𝐴𝐵 ) ) → ∃ 𝑥𝐴 - 𝑤 = 𝐵 )
20 nfv 𝑥 𝑤 ∈ ℝ
21 1 20 nfan 𝑥 ( 𝜑𝑤 ∈ ℝ )
22 negeq ( - 𝑤 = 𝐵 → - - 𝑤 = - 𝐵 )
23 22 eqcomd ( - 𝑤 = 𝐵 → - 𝐵 = - - 𝑤 )
24 23 adantl ( ( 𝑤 ∈ ℝ ∧ - 𝑤 = 𝐵 ) → - 𝐵 = - - 𝑤 )
25 recn ( 𝑤 ∈ ℝ → 𝑤 ∈ ℂ )
26 25 negnegd ( 𝑤 ∈ ℝ → - - 𝑤 = 𝑤 )
27 26 adantr ( ( 𝑤 ∈ ℝ ∧ - 𝑤 = 𝐵 ) → - - 𝑤 = 𝑤 )
28 24 27 eqtr2d ( ( 𝑤 ∈ ℝ ∧ - 𝑤 = 𝐵 ) → 𝑤 = - 𝐵 )
29 28 ex ( 𝑤 ∈ ℝ → ( - 𝑤 = 𝐵𝑤 = - 𝐵 ) )
30 29 adantl ( ( 𝜑𝑤 ∈ ℝ ) → ( - 𝑤 = 𝐵𝑤 = - 𝐵 ) )
31 30 adantr ( ( ( 𝜑𝑤 ∈ ℝ ) ∧ 𝑥𝐴 ) → ( - 𝑤 = 𝐵𝑤 = - 𝐵 ) )
32 negeq ( 𝑤 = - 𝐵 → - 𝑤 = - - 𝐵 )
33 32 adantl ( ( ( 𝜑𝑥𝐴 ) ∧ 𝑤 = - 𝐵 ) → - 𝑤 = - - 𝐵 )
34 3 recnd ( ( 𝜑𝑥𝐴 ) → 𝐵 ∈ ℂ )
35 34 negnegd ( ( 𝜑𝑥𝐴 ) → - - 𝐵 = 𝐵 )
36 35 adantr ( ( ( 𝜑𝑥𝐴 ) ∧ 𝑤 = - 𝐵 ) → - - 𝐵 = 𝐵 )
37 33 36 eqtrd ( ( ( 𝜑𝑥𝐴 ) ∧ 𝑤 = - 𝐵 ) → - 𝑤 = 𝐵 )
38 37 ex ( ( 𝜑𝑥𝐴 ) → ( 𝑤 = - 𝐵 → - 𝑤 = 𝐵 ) )
39 38 adantlr ( ( ( 𝜑𝑤 ∈ ℝ ) ∧ 𝑥𝐴 ) → ( 𝑤 = - 𝐵 → - 𝑤 = 𝐵 ) )
40 31 39 impbid ( ( ( 𝜑𝑤 ∈ ℝ ) ∧ 𝑥𝐴 ) → ( - 𝑤 = 𝐵𝑤 = - 𝐵 ) )
41 21 40 rexbida ( ( 𝜑𝑤 ∈ ℝ ) → ( ∃ 𝑥𝐴 - 𝑤 = 𝐵 ↔ ∃ 𝑥𝐴 𝑤 = - 𝐵 ) )
42 41 adantr ( ( ( 𝜑𝑤 ∈ ℝ ) ∧ - 𝑤 ∈ ran ( 𝑥𝐴𝐵 ) ) → ( ∃ 𝑥𝐴 - 𝑤 = 𝐵 ↔ ∃ 𝑥𝐴 𝑤 = - 𝐵 ) )
43 19 42 mpbid ( ( ( 𝜑𝑤 ∈ ℝ ) ∧ - 𝑤 ∈ ran ( 𝑥𝐴𝐵 ) ) → ∃ 𝑥𝐴 𝑤 = - 𝐵 )
44 simplr ( ( ( 𝜑𝑤 ∈ ℝ ) ∧ - 𝑤 ∈ ran ( 𝑥𝐴𝐵 ) ) → 𝑤 ∈ ℝ )
45 12 43 44 elrnmptd ( ( ( 𝜑𝑤 ∈ ℝ ) ∧ - 𝑤 ∈ ran ( 𝑥𝐴𝐵 ) ) → 𝑤 ∈ ran ( 𝑥𝐴 ↦ - 𝐵 ) )
46 45 ex ( ( 𝜑𝑤 ∈ ℝ ) → ( - 𝑤 ∈ ran ( 𝑥𝐴𝐵 ) → 𝑤 ∈ ran ( 𝑥𝐴 ↦ - 𝐵 ) ) )
47 46 ralrimiva ( 𝜑 → ∀ 𝑤 ∈ ℝ ( - 𝑤 ∈ ran ( 𝑥𝐴𝐵 ) → 𝑤 ∈ ran ( 𝑥𝐴 ↦ - 𝐵 ) ) )
48 rabss ( { 𝑤 ∈ ℝ ∣ - 𝑤 ∈ ran ( 𝑥𝐴𝐵 ) } ⊆ ran ( 𝑥𝐴 ↦ - 𝐵 ) ↔ ∀ 𝑤 ∈ ℝ ( - 𝑤 ∈ ran ( 𝑥𝐴𝐵 ) → 𝑤 ∈ ran ( 𝑥𝐴 ↦ - 𝐵 ) ) )
49 47 48 sylibr ( 𝜑 → { 𝑤 ∈ ℝ ∣ - 𝑤 ∈ ran ( 𝑥𝐴𝐵 ) } ⊆ ran ( 𝑥𝐴 ↦ - 𝐵 ) )
50 nfcv 𝑥 - 𝑤
51 nfmpt1 𝑥 ( 𝑥𝐴𝐵 )
52 51 nfrn 𝑥 ran ( 𝑥𝐴𝐵 )
53 50 52 nfel 𝑥 - 𝑤 ∈ ran ( 𝑥𝐴𝐵 )
54 nfcv 𝑥
55 53 54 nfrabw 𝑥 { 𝑤 ∈ ℝ ∣ - 𝑤 ∈ ran ( 𝑥𝐴𝐵 ) }
56 32 eleq1d ( 𝑤 = - 𝐵 → ( - 𝑤 ∈ ran ( 𝑥𝐴𝐵 ) ↔ - - 𝐵 ∈ ran ( 𝑥𝐴𝐵 ) ) )
57 3 renegcld ( ( 𝜑𝑥𝐴 ) → - 𝐵 ∈ ℝ )
58 simpr ( ( 𝜑𝑥𝐴 ) → 𝑥𝐴 )
59 5 elrnmpt1 ( ( 𝑥𝐴𝐵 ∈ ℝ ) → 𝐵 ∈ ran ( 𝑥𝐴𝐵 ) )
60 58 3 59 syl2anc ( ( 𝜑𝑥𝐴 ) → 𝐵 ∈ ran ( 𝑥𝐴𝐵 ) )
61 35 60 eqeltrd ( ( 𝜑𝑥𝐴 ) → - - 𝐵 ∈ ran ( 𝑥𝐴𝐵 ) )
62 56 57 61 elrabd ( ( 𝜑𝑥𝐴 ) → - 𝐵 ∈ { 𝑤 ∈ ℝ ∣ - 𝑤 ∈ ran ( 𝑥𝐴𝐵 ) } )
63 1 55 12 62 rnmptssdf ( 𝜑 → ran ( 𝑥𝐴 ↦ - 𝐵 ) ⊆ { 𝑤 ∈ ℝ ∣ - 𝑤 ∈ ran ( 𝑥𝐴𝐵 ) } )
64 49 63 eqssd ( 𝜑 → { 𝑤 ∈ ℝ ∣ - 𝑤 ∈ ran ( 𝑥𝐴𝐵 ) } = ran ( 𝑥𝐴 ↦ - 𝐵 ) )
65 64 infeq1d ( 𝜑 → inf ( { 𝑤 ∈ ℝ ∣ - 𝑤 ∈ ran ( 𝑥𝐴𝐵 ) } , ℝ , < ) = inf ( ran ( 𝑥𝐴 ↦ - 𝐵 ) , ℝ , < ) )
66 65 negeqd ( 𝜑 → - inf ( { 𝑤 ∈ ℝ ∣ - 𝑤 ∈ ran ( 𝑥𝐴𝐵 ) } , ℝ , < ) = - inf ( ran ( 𝑥𝐴 ↦ - 𝐵 ) , ℝ , < ) )
67 11 66 eqtrd ( 𝜑 → sup ( ran ( 𝑥𝐴𝐵 ) , ℝ , < ) = - inf ( ran ( 𝑥𝐴 ↦ - 𝐵 ) , ℝ , < ) )