Metamath Proof Explorer


Theorem supminfrnmpt

Description: The indexed supremum of a bounded-above set of reals is the negation of the indexed infimum of that set's image under negation. (Contributed by Glauco Siliprandi, 2-Jan-2022)

Ref Expression
Hypotheses supminfrnmpt.x 𝑥 𝜑
supminfrnmpt.a ( 𝜑𝐴 ≠ ∅ )
supminfrnmpt.b ( ( 𝜑𝑥𝐴 ) → 𝐵 ∈ ℝ )
supminfrnmpt.y ( 𝜑 → ∃ 𝑦 ∈ ℝ ∀ 𝑥𝐴 𝐵𝑦 )
Assertion supminfrnmpt ( 𝜑 → sup ( ran ( 𝑥𝐴𝐵 ) , ℝ , < ) = - inf ( ran ( 𝑥𝐴 ↦ - 𝐵 ) , ℝ , < ) )

Proof

Step Hyp Ref Expression
1 supminfrnmpt.x 𝑥 𝜑
2 supminfrnmpt.a ( 𝜑𝐴 ≠ ∅ )
3 supminfrnmpt.b ( ( 𝜑𝑥𝐴 ) → 𝐵 ∈ ℝ )
4 supminfrnmpt.y ( 𝜑 → ∃ 𝑦 ∈ ℝ ∀ 𝑥𝐴 𝐵𝑦 )
5 eqid ( 𝑥𝐴𝐵 ) = ( 𝑥𝐴𝐵 )
6 1 5 3 rnmptssd ( 𝜑 → ran ( 𝑥𝐴𝐵 ) ⊆ ℝ )
7 1 3 5 2 rnmptn0 ( 𝜑 → ran ( 𝑥𝐴𝐵 ) ≠ ∅ )
8 1 4 rnmptbdd ( 𝜑 → ∃ 𝑦 ∈ ℝ ∀ 𝑧 ∈ ran ( 𝑥𝐴𝐵 ) 𝑧𝑦 )
9 supminf ( ( ran ( 𝑥𝐴𝐵 ) ⊆ ℝ ∧ ran ( 𝑥𝐴𝐵 ) ≠ ∅ ∧ ∃ 𝑦 ∈ ℝ ∀ 𝑧 ∈ ran ( 𝑥𝐴𝐵 ) 𝑧𝑦 ) → sup ( ran ( 𝑥𝐴𝐵 ) , ℝ , < ) = - inf ( { 𝑤 ∈ ℝ ∣ - 𝑤 ∈ ran ( 𝑥𝐴𝐵 ) } , ℝ , < ) )
10 6 7 8 9 syl3anc ( 𝜑 → sup ( ran ( 𝑥𝐴𝐵 ) , ℝ , < ) = - inf ( { 𝑤 ∈ ℝ ∣ - 𝑤 ∈ ran ( 𝑥𝐴𝐵 ) } , ℝ , < ) )
11 eqid ( 𝑥𝐴 ↦ - 𝐵 ) = ( 𝑥𝐴 ↦ - 𝐵 )
12 simpr ( ( 𝑤 ∈ ℝ ∧ - 𝑤 ∈ ran ( 𝑥𝐴𝐵 ) ) → - 𝑤 ∈ ran ( 𝑥𝐴𝐵 ) )
13 renegcl ( 𝑤 ∈ ℝ → - 𝑤 ∈ ℝ )
14 5 elrnmpt ( - 𝑤 ∈ ℝ → ( - 𝑤 ∈ ran ( 𝑥𝐴𝐵 ) ↔ ∃ 𝑥𝐴 - 𝑤 = 𝐵 ) )
15 13 14 syl ( 𝑤 ∈ ℝ → ( - 𝑤 ∈ ran ( 𝑥𝐴𝐵 ) ↔ ∃ 𝑥𝐴 - 𝑤 = 𝐵 ) )
16 15 adantr ( ( 𝑤 ∈ ℝ ∧ - 𝑤 ∈ ran ( 𝑥𝐴𝐵 ) ) → ( - 𝑤 ∈ ran ( 𝑥𝐴𝐵 ) ↔ ∃ 𝑥𝐴 - 𝑤 = 𝐵 ) )
17 12 16 mpbid ( ( 𝑤 ∈ ℝ ∧ - 𝑤 ∈ ran ( 𝑥𝐴𝐵 ) ) → ∃ 𝑥𝐴 - 𝑤 = 𝐵 )
18 17 adantll ( ( ( 𝜑𝑤 ∈ ℝ ) ∧ - 𝑤 ∈ ran ( 𝑥𝐴𝐵 ) ) → ∃ 𝑥𝐴 - 𝑤 = 𝐵 )
19 nfv 𝑥 𝑤 ∈ ℝ
20 1 19 nfan 𝑥 ( 𝜑𝑤 ∈ ℝ )
21 negeq ( - 𝑤 = 𝐵 → - - 𝑤 = - 𝐵 )
22 21 eqcomd ( - 𝑤 = 𝐵 → - 𝐵 = - - 𝑤 )
23 22 adantl ( ( 𝑤 ∈ ℝ ∧ - 𝑤 = 𝐵 ) → - 𝐵 = - - 𝑤 )
24 recn ( 𝑤 ∈ ℝ → 𝑤 ∈ ℂ )
25 24 negnegd ( 𝑤 ∈ ℝ → - - 𝑤 = 𝑤 )
26 25 adantr ( ( 𝑤 ∈ ℝ ∧ - 𝑤 = 𝐵 ) → - - 𝑤 = 𝑤 )
27 23 26 eqtr2d ( ( 𝑤 ∈ ℝ ∧ - 𝑤 = 𝐵 ) → 𝑤 = - 𝐵 )
28 27 ex ( 𝑤 ∈ ℝ → ( - 𝑤 = 𝐵𝑤 = - 𝐵 ) )
29 28 adantl ( ( 𝜑𝑤 ∈ ℝ ) → ( - 𝑤 = 𝐵𝑤 = - 𝐵 ) )
30 29 adantr ( ( ( 𝜑𝑤 ∈ ℝ ) ∧ 𝑥𝐴 ) → ( - 𝑤 = 𝐵𝑤 = - 𝐵 ) )
31 negeq ( 𝑤 = - 𝐵 → - 𝑤 = - - 𝐵 )
32 31 adantl ( ( ( 𝜑𝑥𝐴 ) ∧ 𝑤 = - 𝐵 ) → - 𝑤 = - - 𝐵 )
33 3 recnd ( ( 𝜑𝑥𝐴 ) → 𝐵 ∈ ℂ )
34 33 negnegd ( ( 𝜑𝑥𝐴 ) → - - 𝐵 = 𝐵 )
35 34 adantr ( ( ( 𝜑𝑥𝐴 ) ∧ 𝑤 = - 𝐵 ) → - - 𝐵 = 𝐵 )
36 32 35 eqtrd ( ( ( 𝜑𝑥𝐴 ) ∧ 𝑤 = - 𝐵 ) → - 𝑤 = 𝐵 )
37 36 ex ( ( 𝜑𝑥𝐴 ) → ( 𝑤 = - 𝐵 → - 𝑤 = 𝐵 ) )
38 37 adantlr ( ( ( 𝜑𝑤 ∈ ℝ ) ∧ 𝑥𝐴 ) → ( 𝑤 = - 𝐵 → - 𝑤 = 𝐵 ) )
39 30 38 impbid ( ( ( 𝜑𝑤 ∈ ℝ ) ∧ 𝑥𝐴 ) → ( - 𝑤 = 𝐵𝑤 = - 𝐵 ) )
40 20 39 rexbida ( ( 𝜑𝑤 ∈ ℝ ) → ( ∃ 𝑥𝐴 - 𝑤 = 𝐵 ↔ ∃ 𝑥𝐴 𝑤 = - 𝐵 ) )
41 40 adantr ( ( ( 𝜑𝑤 ∈ ℝ ) ∧ - 𝑤 ∈ ran ( 𝑥𝐴𝐵 ) ) → ( ∃ 𝑥𝐴 - 𝑤 = 𝐵 ↔ ∃ 𝑥𝐴 𝑤 = - 𝐵 ) )
42 18 41 mpbid ( ( ( 𝜑𝑤 ∈ ℝ ) ∧ - 𝑤 ∈ ran ( 𝑥𝐴𝐵 ) ) → ∃ 𝑥𝐴 𝑤 = - 𝐵 )
43 simplr ( ( ( 𝜑𝑤 ∈ ℝ ) ∧ - 𝑤 ∈ ran ( 𝑥𝐴𝐵 ) ) → 𝑤 ∈ ℝ )
44 11 42 43 elrnmptd ( ( ( 𝜑𝑤 ∈ ℝ ) ∧ - 𝑤 ∈ ran ( 𝑥𝐴𝐵 ) ) → 𝑤 ∈ ran ( 𝑥𝐴 ↦ - 𝐵 ) )
45 44 ex ( ( 𝜑𝑤 ∈ ℝ ) → ( - 𝑤 ∈ ran ( 𝑥𝐴𝐵 ) → 𝑤 ∈ ran ( 𝑥𝐴 ↦ - 𝐵 ) ) )
46 45 ralrimiva ( 𝜑 → ∀ 𝑤 ∈ ℝ ( - 𝑤 ∈ ran ( 𝑥𝐴𝐵 ) → 𝑤 ∈ ran ( 𝑥𝐴 ↦ - 𝐵 ) ) )
47 rabss ( { 𝑤 ∈ ℝ ∣ - 𝑤 ∈ ran ( 𝑥𝐴𝐵 ) } ⊆ ran ( 𝑥𝐴 ↦ - 𝐵 ) ↔ ∀ 𝑤 ∈ ℝ ( - 𝑤 ∈ ran ( 𝑥𝐴𝐵 ) → 𝑤 ∈ ran ( 𝑥𝐴 ↦ - 𝐵 ) ) )
48 46 47 sylibr ( 𝜑 → { 𝑤 ∈ ℝ ∣ - 𝑤 ∈ ran ( 𝑥𝐴𝐵 ) } ⊆ ran ( 𝑥𝐴 ↦ - 𝐵 ) )
49 nfcv 𝑥 - 𝑤
50 nfmpt1 𝑥 ( 𝑥𝐴𝐵 )
51 50 nfrn 𝑥 ran ( 𝑥𝐴𝐵 )
52 49 51 nfel 𝑥 - 𝑤 ∈ ran ( 𝑥𝐴𝐵 )
53 nfcv 𝑥
54 52 53 nfrabw 𝑥 { 𝑤 ∈ ℝ ∣ - 𝑤 ∈ ran ( 𝑥𝐴𝐵 ) }
55 31 eleq1d ( 𝑤 = - 𝐵 → ( - 𝑤 ∈ ran ( 𝑥𝐴𝐵 ) ↔ - - 𝐵 ∈ ran ( 𝑥𝐴𝐵 ) ) )
56 3 renegcld ( ( 𝜑𝑥𝐴 ) → - 𝐵 ∈ ℝ )
57 simpr ( ( 𝜑𝑥𝐴 ) → 𝑥𝐴 )
58 5 elrnmpt1 ( ( 𝑥𝐴𝐵 ∈ ℝ ) → 𝐵 ∈ ran ( 𝑥𝐴𝐵 ) )
59 57 3 58 syl2anc ( ( 𝜑𝑥𝐴 ) → 𝐵 ∈ ran ( 𝑥𝐴𝐵 ) )
60 34 59 eqeltrd ( ( 𝜑𝑥𝐴 ) → - - 𝐵 ∈ ran ( 𝑥𝐴𝐵 ) )
61 55 56 60 elrabd ( ( 𝜑𝑥𝐴 ) → - 𝐵 ∈ { 𝑤 ∈ ℝ ∣ - 𝑤 ∈ ran ( 𝑥𝐴𝐵 ) } )
62 1 54 11 61 rnmptssdf ( 𝜑 → ran ( 𝑥𝐴 ↦ - 𝐵 ) ⊆ { 𝑤 ∈ ℝ ∣ - 𝑤 ∈ ran ( 𝑥𝐴𝐵 ) } )
63 48 62 eqssd ( 𝜑 → { 𝑤 ∈ ℝ ∣ - 𝑤 ∈ ran ( 𝑥𝐴𝐵 ) } = ran ( 𝑥𝐴 ↦ - 𝐵 ) )
64 63 infeq1d ( 𝜑 → inf ( { 𝑤 ∈ ℝ ∣ - 𝑤 ∈ ran ( 𝑥𝐴𝐵 ) } , ℝ , < ) = inf ( ran ( 𝑥𝐴 ↦ - 𝐵 ) , ℝ , < ) )
65 64 negeqd ( 𝜑 → - inf ( { 𝑤 ∈ ℝ ∣ - 𝑤 ∈ ran ( 𝑥𝐴𝐵 ) } , ℝ , < ) = - inf ( ran ( 𝑥𝐴 ↦ - 𝐵 ) , ℝ , < ) )
66 10 65 eqtrd ( 𝜑 → sup ( ran ( 𝑥𝐴𝐵 ) , ℝ , < ) = - inf ( ran ( 𝑥𝐴 ↦ - 𝐵 ) , ℝ , < ) )