Step |
Hyp |
Ref |
Expression |
1 |
|
supminfxr2.1 |
⊢ ( 𝜑 → 𝐴 ⊆ ℝ* ) |
2 |
|
xnegmnf |
⊢ -𝑒 -∞ = +∞ |
3 |
2
|
eqcomi |
⊢ +∞ = -𝑒 -∞ |
4 |
3
|
a1i |
⊢ ( ( 𝜑 ∧ +∞ ∈ 𝐴 ) → +∞ = -𝑒 -∞ ) |
5 |
|
supxrpnf |
⊢ ( ( 𝐴 ⊆ ℝ* ∧ +∞ ∈ 𝐴 ) → sup ( 𝐴 , ℝ* , < ) = +∞ ) |
6 |
1 5
|
sylan |
⊢ ( ( 𝜑 ∧ +∞ ∈ 𝐴 ) → sup ( 𝐴 , ℝ* , < ) = +∞ ) |
7 |
|
ssrab2 |
⊢ { 𝑦 ∈ ℝ* ∣ -𝑒 𝑦 ∈ 𝐴 } ⊆ ℝ* |
8 |
7
|
a1i |
⊢ ( +∞ ∈ 𝐴 → { 𝑦 ∈ ℝ* ∣ -𝑒 𝑦 ∈ 𝐴 } ⊆ ℝ* ) |
9 |
|
xnegeq |
⊢ ( 𝑦 = -∞ → -𝑒 𝑦 = -𝑒 -∞ ) |
10 |
2
|
a1i |
⊢ ( 𝑦 = -∞ → -𝑒 -∞ = +∞ ) |
11 |
9 10
|
eqtrd |
⊢ ( 𝑦 = -∞ → -𝑒 𝑦 = +∞ ) |
12 |
11
|
eleq1d |
⊢ ( 𝑦 = -∞ → ( -𝑒 𝑦 ∈ 𝐴 ↔ +∞ ∈ 𝐴 ) ) |
13 |
|
mnfxr |
⊢ -∞ ∈ ℝ* |
14 |
13
|
a1i |
⊢ ( +∞ ∈ 𝐴 → -∞ ∈ ℝ* ) |
15 |
|
id |
⊢ ( +∞ ∈ 𝐴 → +∞ ∈ 𝐴 ) |
16 |
12 14 15
|
elrabd |
⊢ ( +∞ ∈ 𝐴 → -∞ ∈ { 𝑦 ∈ ℝ* ∣ -𝑒 𝑦 ∈ 𝐴 } ) |
17 |
|
infxrmnf |
⊢ ( ( { 𝑦 ∈ ℝ* ∣ -𝑒 𝑦 ∈ 𝐴 } ⊆ ℝ* ∧ -∞ ∈ { 𝑦 ∈ ℝ* ∣ -𝑒 𝑦 ∈ 𝐴 } ) → inf ( { 𝑦 ∈ ℝ* ∣ -𝑒 𝑦 ∈ 𝐴 } , ℝ* , < ) = -∞ ) |
18 |
8 16 17
|
syl2anc |
⊢ ( +∞ ∈ 𝐴 → inf ( { 𝑦 ∈ ℝ* ∣ -𝑒 𝑦 ∈ 𝐴 } , ℝ* , < ) = -∞ ) |
19 |
18
|
adantl |
⊢ ( ( 𝜑 ∧ +∞ ∈ 𝐴 ) → inf ( { 𝑦 ∈ ℝ* ∣ -𝑒 𝑦 ∈ 𝐴 } , ℝ* , < ) = -∞ ) |
20 |
19
|
xnegeqd |
⊢ ( ( 𝜑 ∧ +∞ ∈ 𝐴 ) → -𝑒 inf ( { 𝑦 ∈ ℝ* ∣ -𝑒 𝑦 ∈ 𝐴 } , ℝ* , < ) = -𝑒 -∞ ) |
21 |
4 6 20
|
3eqtr4d |
⊢ ( ( 𝜑 ∧ +∞ ∈ 𝐴 ) → sup ( 𝐴 , ℝ* , < ) = -𝑒 inf ( { 𝑦 ∈ ℝ* ∣ -𝑒 𝑦 ∈ 𝐴 } , ℝ* , < ) ) |
22 |
1
|
ssdifssd |
⊢ ( 𝜑 → ( 𝐴 ∖ { -∞ } ) ⊆ ℝ* ) |
23 |
22
|
adantr |
⊢ ( ( 𝜑 ∧ ¬ +∞ ∈ 𝐴 ) → ( 𝐴 ∖ { -∞ } ) ⊆ ℝ* ) |
24 |
|
difssd |
⊢ ( ¬ +∞ ∈ 𝐴 → ( 𝐴 ∖ { -∞ } ) ⊆ 𝐴 ) |
25 |
|
id |
⊢ ( ¬ +∞ ∈ 𝐴 → ¬ +∞ ∈ 𝐴 ) |
26 |
|
ssnel |
⊢ ( ( ( 𝐴 ∖ { -∞ } ) ⊆ 𝐴 ∧ ¬ +∞ ∈ 𝐴 ) → ¬ +∞ ∈ ( 𝐴 ∖ { -∞ } ) ) |
27 |
24 25 26
|
syl2anc |
⊢ ( ¬ +∞ ∈ 𝐴 → ¬ +∞ ∈ ( 𝐴 ∖ { -∞ } ) ) |
28 |
27
|
adantl |
⊢ ( ( 𝜑 ∧ ¬ +∞ ∈ 𝐴 ) → ¬ +∞ ∈ ( 𝐴 ∖ { -∞ } ) ) |
29 |
|
neldifsnd |
⊢ ( ( 𝜑 ∧ ¬ +∞ ∈ 𝐴 ) → ¬ -∞ ∈ ( 𝐴 ∖ { -∞ } ) ) |
30 |
23 28 29
|
xrssre |
⊢ ( ( 𝜑 ∧ ¬ +∞ ∈ 𝐴 ) → ( 𝐴 ∖ { -∞ } ) ⊆ ℝ ) |
31 |
30
|
supminfxr |
⊢ ( ( 𝜑 ∧ ¬ +∞ ∈ 𝐴 ) → sup ( ( 𝐴 ∖ { -∞ } ) , ℝ* , < ) = -𝑒 inf ( { 𝑦 ∈ ℝ ∣ - 𝑦 ∈ ( 𝐴 ∖ { -∞ } ) } , ℝ* , < ) ) |
32 |
|
supxrmnf2 |
⊢ ( 𝐴 ⊆ ℝ* → sup ( ( 𝐴 ∖ { -∞ } ) , ℝ* , < ) = sup ( 𝐴 , ℝ* , < ) ) |
33 |
1 32
|
syl |
⊢ ( 𝜑 → sup ( ( 𝐴 ∖ { -∞ } ) , ℝ* , < ) = sup ( 𝐴 , ℝ* , < ) ) |
34 |
33
|
eqcomd |
⊢ ( 𝜑 → sup ( 𝐴 , ℝ* , < ) = sup ( ( 𝐴 ∖ { -∞ } ) , ℝ* , < ) ) |
35 |
34
|
adantr |
⊢ ( ( 𝜑 ∧ ¬ +∞ ∈ 𝐴 ) → sup ( 𝐴 , ℝ* , < ) = sup ( ( 𝐴 ∖ { -∞ } ) , ℝ* , < ) ) |
36 |
|
rexr |
⊢ ( 𝑦 ∈ ℝ → 𝑦 ∈ ℝ* ) |
37 |
36
|
adantr |
⊢ ( ( 𝑦 ∈ ℝ ∧ - 𝑦 ∈ ( 𝐴 ∖ { -∞ } ) ) → 𝑦 ∈ ℝ* ) |
38 |
|
simpl |
⊢ ( ( 𝑦 ∈ ℝ ∧ - 𝑦 ∈ ( 𝐴 ∖ { -∞ } ) ) → 𝑦 ∈ ℝ ) |
39 |
38
|
rexnegd |
⊢ ( ( 𝑦 ∈ ℝ ∧ - 𝑦 ∈ ( 𝐴 ∖ { -∞ } ) ) → -𝑒 𝑦 = - 𝑦 ) |
40 |
|
eldifi |
⊢ ( - 𝑦 ∈ ( 𝐴 ∖ { -∞ } ) → - 𝑦 ∈ 𝐴 ) |
41 |
40
|
adantl |
⊢ ( ( 𝑦 ∈ ℝ ∧ - 𝑦 ∈ ( 𝐴 ∖ { -∞ } ) ) → - 𝑦 ∈ 𝐴 ) |
42 |
39 41
|
eqeltrd |
⊢ ( ( 𝑦 ∈ ℝ ∧ - 𝑦 ∈ ( 𝐴 ∖ { -∞ } ) ) → -𝑒 𝑦 ∈ 𝐴 ) |
43 |
37 42
|
jca |
⊢ ( ( 𝑦 ∈ ℝ ∧ - 𝑦 ∈ ( 𝐴 ∖ { -∞ } ) ) → ( 𝑦 ∈ ℝ* ∧ -𝑒 𝑦 ∈ 𝐴 ) ) |
44 |
|
rabid |
⊢ ( 𝑦 ∈ { 𝑦 ∈ ℝ* ∣ -𝑒 𝑦 ∈ 𝐴 } ↔ ( 𝑦 ∈ ℝ* ∧ -𝑒 𝑦 ∈ 𝐴 ) ) |
45 |
43 44
|
sylibr |
⊢ ( ( 𝑦 ∈ ℝ ∧ - 𝑦 ∈ ( 𝐴 ∖ { -∞ } ) ) → 𝑦 ∈ { 𝑦 ∈ ℝ* ∣ -𝑒 𝑦 ∈ 𝐴 } ) |
46 |
|
renepnf |
⊢ ( 𝑦 ∈ ℝ → 𝑦 ≠ +∞ ) |
47 |
|
elsni |
⊢ ( 𝑦 ∈ { +∞ } → 𝑦 = +∞ ) |
48 |
47
|
necon3ai |
⊢ ( 𝑦 ≠ +∞ → ¬ 𝑦 ∈ { +∞ } ) |
49 |
46 48
|
syl |
⊢ ( 𝑦 ∈ ℝ → ¬ 𝑦 ∈ { +∞ } ) |
50 |
38 49
|
syl |
⊢ ( ( 𝑦 ∈ ℝ ∧ - 𝑦 ∈ ( 𝐴 ∖ { -∞ } ) ) → ¬ 𝑦 ∈ { +∞ } ) |
51 |
45 50
|
eldifd |
⊢ ( ( 𝑦 ∈ ℝ ∧ - 𝑦 ∈ ( 𝐴 ∖ { -∞ } ) ) → 𝑦 ∈ ( { 𝑦 ∈ ℝ* ∣ -𝑒 𝑦 ∈ 𝐴 } ∖ { +∞ } ) ) |
52 |
51
|
ex |
⊢ ( 𝑦 ∈ ℝ → ( - 𝑦 ∈ ( 𝐴 ∖ { -∞ } ) → 𝑦 ∈ ( { 𝑦 ∈ ℝ* ∣ -𝑒 𝑦 ∈ 𝐴 } ∖ { +∞ } ) ) ) |
53 |
52
|
rgen |
⊢ ∀ 𝑦 ∈ ℝ ( - 𝑦 ∈ ( 𝐴 ∖ { -∞ } ) → 𝑦 ∈ ( { 𝑦 ∈ ℝ* ∣ -𝑒 𝑦 ∈ 𝐴 } ∖ { +∞ } ) ) |
54 |
53
|
a1i |
⊢ ( ¬ +∞ ∈ 𝐴 → ∀ 𝑦 ∈ ℝ ( - 𝑦 ∈ ( 𝐴 ∖ { -∞ } ) → 𝑦 ∈ ( { 𝑦 ∈ ℝ* ∣ -𝑒 𝑦 ∈ 𝐴 } ∖ { +∞ } ) ) ) |
55 |
|
nfrab1 |
⊢ Ⅎ 𝑦 { 𝑦 ∈ ℝ* ∣ -𝑒 𝑦 ∈ 𝐴 } |
56 |
|
nfcv |
⊢ Ⅎ 𝑦 { +∞ } |
57 |
55 56
|
nfdif |
⊢ Ⅎ 𝑦 ( { 𝑦 ∈ ℝ* ∣ -𝑒 𝑦 ∈ 𝐴 } ∖ { +∞ } ) |
58 |
57
|
rabssf |
⊢ ( { 𝑦 ∈ ℝ ∣ - 𝑦 ∈ ( 𝐴 ∖ { -∞ } ) } ⊆ ( { 𝑦 ∈ ℝ* ∣ -𝑒 𝑦 ∈ 𝐴 } ∖ { +∞ } ) ↔ ∀ 𝑦 ∈ ℝ ( - 𝑦 ∈ ( 𝐴 ∖ { -∞ } ) → 𝑦 ∈ ( { 𝑦 ∈ ℝ* ∣ -𝑒 𝑦 ∈ 𝐴 } ∖ { +∞ } ) ) ) |
59 |
54 58
|
sylibr |
⊢ ( ¬ +∞ ∈ 𝐴 → { 𝑦 ∈ ℝ ∣ - 𝑦 ∈ ( 𝐴 ∖ { -∞ } ) } ⊆ ( { 𝑦 ∈ ℝ* ∣ -𝑒 𝑦 ∈ 𝐴 } ∖ { +∞ } ) ) |
60 |
|
nfv |
⊢ Ⅎ 𝑦 ¬ +∞ ∈ 𝐴 |
61 |
|
nfcv |
⊢ Ⅎ 𝑦 ℝ |
62 |
|
eldifi |
⊢ ( 𝑦 ∈ ( { 𝑦 ∈ ℝ* ∣ -𝑒 𝑦 ∈ 𝐴 } ∖ { +∞ } ) → 𝑦 ∈ { 𝑦 ∈ ℝ* ∣ -𝑒 𝑦 ∈ 𝐴 } ) |
63 |
7 62
|
sselid |
⊢ ( 𝑦 ∈ ( { 𝑦 ∈ ℝ* ∣ -𝑒 𝑦 ∈ 𝐴 } ∖ { +∞ } ) → 𝑦 ∈ ℝ* ) |
64 |
63
|
adantl |
⊢ ( ( ¬ +∞ ∈ 𝐴 ∧ 𝑦 ∈ ( { 𝑦 ∈ ℝ* ∣ -𝑒 𝑦 ∈ 𝐴 } ∖ { +∞ } ) ) → 𝑦 ∈ ℝ* ) |
65 |
44
|
simprbi |
⊢ ( 𝑦 ∈ { 𝑦 ∈ ℝ* ∣ -𝑒 𝑦 ∈ 𝐴 } → -𝑒 𝑦 ∈ 𝐴 ) |
66 |
62 65
|
syl |
⊢ ( 𝑦 ∈ ( { 𝑦 ∈ ℝ* ∣ -𝑒 𝑦 ∈ 𝐴 } ∖ { +∞ } ) → -𝑒 𝑦 ∈ 𝐴 ) |
67 |
12
|
biimpac |
⊢ ( ( -𝑒 𝑦 ∈ 𝐴 ∧ 𝑦 = -∞ ) → +∞ ∈ 𝐴 ) |
68 |
67
|
adantll |
⊢ ( ( ( ¬ +∞ ∈ 𝐴 ∧ -𝑒 𝑦 ∈ 𝐴 ) ∧ 𝑦 = -∞ ) → +∞ ∈ 𝐴 ) |
69 |
|
simpll |
⊢ ( ( ( ¬ +∞ ∈ 𝐴 ∧ -𝑒 𝑦 ∈ 𝐴 ) ∧ 𝑦 = -∞ ) → ¬ +∞ ∈ 𝐴 ) |
70 |
68 69
|
pm2.65da |
⊢ ( ( ¬ +∞ ∈ 𝐴 ∧ -𝑒 𝑦 ∈ 𝐴 ) → ¬ 𝑦 = -∞ ) |
71 |
70
|
neqned |
⊢ ( ( ¬ +∞ ∈ 𝐴 ∧ -𝑒 𝑦 ∈ 𝐴 ) → 𝑦 ≠ -∞ ) |
72 |
66 71
|
sylan2 |
⊢ ( ( ¬ +∞ ∈ 𝐴 ∧ 𝑦 ∈ ( { 𝑦 ∈ ℝ* ∣ -𝑒 𝑦 ∈ 𝐴 } ∖ { +∞ } ) ) → 𝑦 ≠ -∞ ) |
73 |
|
eldifsni |
⊢ ( 𝑦 ∈ ( { 𝑦 ∈ ℝ* ∣ -𝑒 𝑦 ∈ 𝐴 } ∖ { +∞ } ) → 𝑦 ≠ +∞ ) |
74 |
73
|
adantl |
⊢ ( ( ¬ +∞ ∈ 𝐴 ∧ 𝑦 ∈ ( { 𝑦 ∈ ℝ* ∣ -𝑒 𝑦 ∈ 𝐴 } ∖ { +∞ } ) ) → 𝑦 ≠ +∞ ) |
75 |
64 72 74
|
xrred |
⊢ ( ( ¬ +∞ ∈ 𝐴 ∧ 𝑦 ∈ ( { 𝑦 ∈ ℝ* ∣ -𝑒 𝑦 ∈ 𝐴 } ∖ { +∞ } ) ) → 𝑦 ∈ ℝ ) |
76 |
60 57 61 75
|
ssdf2 |
⊢ ( ¬ +∞ ∈ 𝐴 → ( { 𝑦 ∈ ℝ* ∣ -𝑒 𝑦 ∈ 𝐴 } ∖ { +∞ } ) ⊆ ℝ ) |
77 |
75
|
rexnegd |
⊢ ( ( ¬ +∞ ∈ 𝐴 ∧ 𝑦 ∈ ( { 𝑦 ∈ ℝ* ∣ -𝑒 𝑦 ∈ 𝐴 } ∖ { +∞ } ) ) → -𝑒 𝑦 = - 𝑦 ) |
78 |
66
|
adantl |
⊢ ( ( ¬ +∞ ∈ 𝐴 ∧ 𝑦 ∈ ( { 𝑦 ∈ ℝ* ∣ -𝑒 𝑦 ∈ 𝐴 } ∖ { +∞ } ) ) → -𝑒 𝑦 ∈ 𝐴 ) |
79 |
63
|
adantr |
⊢ ( ( 𝑦 ∈ ( { 𝑦 ∈ ℝ* ∣ -𝑒 𝑦 ∈ 𝐴 } ∖ { +∞ } ) ∧ -𝑒 𝑦 ∈ { -∞ } ) → 𝑦 ∈ ℝ* ) |
80 |
|
elsni |
⊢ ( -𝑒 𝑦 ∈ { -∞ } → -𝑒 𝑦 = -∞ ) |
81 |
80
|
adantl |
⊢ ( ( 𝑦 ∈ ( { 𝑦 ∈ ℝ* ∣ -𝑒 𝑦 ∈ 𝐴 } ∖ { +∞ } ) ∧ -𝑒 𝑦 ∈ { -∞ } ) → -𝑒 𝑦 = -∞ ) |
82 |
|
xnegeq |
⊢ ( -𝑒 𝑦 = -∞ → -𝑒 -𝑒 𝑦 = -𝑒 -∞ ) |
83 |
2
|
a1i |
⊢ ( -𝑒 𝑦 = -∞ → -𝑒 -∞ = +∞ ) |
84 |
82 83
|
eqtr2d |
⊢ ( -𝑒 𝑦 = -∞ → +∞ = -𝑒 -𝑒 𝑦 ) |
85 |
84
|
adantl |
⊢ ( ( 𝑦 ∈ ℝ* ∧ -𝑒 𝑦 = -∞ ) → +∞ = -𝑒 -𝑒 𝑦 ) |
86 |
|
xnegneg |
⊢ ( 𝑦 ∈ ℝ* → -𝑒 -𝑒 𝑦 = 𝑦 ) |
87 |
86
|
adantr |
⊢ ( ( 𝑦 ∈ ℝ* ∧ -𝑒 𝑦 = -∞ ) → -𝑒 -𝑒 𝑦 = 𝑦 ) |
88 |
85 87
|
eqtr2d |
⊢ ( ( 𝑦 ∈ ℝ* ∧ -𝑒 𝑦 = -∞ ) → 𝑦 = +∞ ) |
89 |
79 81 88
|
syl2anc |
⊢ ( ( 𝑦 ∈ ( { 𝑦 ∈ ℝ* ∣ -𝑒 𝑦 ∈ 𝐴 } ∖ { +∞ } ) ∧ -𝑒 𝑦 ∈ { -∞ } ) → 𝑦 = +∞ ) |
90 |
73
|
neneqd |
⊢ ( 𝑦 ∈ ( { 𝑦 ∈ ℝ* ∣ -𝑒 𝑦 ∈ 𝐴 } ∖ { +∞ } ) → ¬ 𝑦 = +∞ ) |
91 |
90
|
adantr |
⊢ ( ( 𝑦 ∈ ( { 𝑦 ∈ ℝ* ∣ -𝑒 𝑦 ∈ 𝐴 } ∖ { +∞ } ) ∧ -𝑒 𝑦 ∈ { -∞ } ) → ¬ 𝑦 = +∞ ) |
92 |
89 91
|
pm2.65da |
⊢ ( 𝑦 ∈ ( { 𝑦 ∈ ℝ* ∣ -𝑒 𝑦 ∈ 𝐴 } ∖ { +∞ } ) → ¬ -𝑒 𝑦 ∈ { -∞ } ) |
93 |
92
|
adantl |
⊢ ( ( ¬ +∞ ∈ 𝐴 ∧ 𝑦 ∈ ( { 𝑦 ∈ ℝ* ∣ -𝑒 𝑦 ∈ 𝐴 } ∖ { +∞ } ) ) → ¬ -𝑒 𝑦 ∈ { -∞ } ) |
94 |
78 93
|
eldifd |
⊢ ( ( ¬ +∞ ∈ 𝐴 ∧ 𝑦 ∈ ( { 𝑦 ∈ ℝ* ∣ -𝑒 𝑦 ∈ 𝐴 } ∖ { +∞ } ) ) → -𝑒 𝑦 ∈ ( 𝐴 ∖ { -∞ } ) ) |
95 |
77 94
|
eqeltrrd |
⊢ ( ( ¬ +∞ ∈ 𝐴 ∧ 𝑦 ∈ ( { 𝑦 ∈ ℝ* ∣ -𝑒 𝑦 ∈ 𝐴 } ∖ { +∞ } ) ) → - 𝑦 ∈ ( 𝐴 ∖ { -∞ } ) ) |
96 |
95
|
ralrimiva |
⊢ ( ¬ +∞ ∈ 𝐴 → ∀ 𝑦 ∈ ( { 𝑦 ∈ ℝ* ∣ -𝑒 𝑦 ∈ 𝐴 } ∖ { +∞ } ) - 𝑦 ∈ ( 𝐴 ∖ { -∞ } ) ) |
97 |
76 96
|
jca |
⊢ ( ¬ +∞ ∈ 𝐴 → ( ( { 𝑦 ∈ ℝ* ∣ -𝑒 𝑦 ∈ 𝐴 } ∖ { +∞ } ) ⊆ ℝ ∧ ∀ 𝑦 ∈ ( { 𝑦 ∈ ℝ* ∣ -𝑒 𝑦 ∈ 𝐴 } ∖ { +∞ } ) - 𝑦 ∈ ( 𝐴 ∖ { -∞ } ) ) ) |
98 |
57 61
|
ssrabf |
⊢ ( ( { 𝑦 ∈ ℝ* ∣ -𝑒 𝑦 ∈ 𝐴 } ∖ { +∞ } ) ⊆ { 𝑦 ∈ ℝ ∣ - 𝑦 ∈ ( 𝐴 ∖ { -∞ } ) } ↔ ( ( { 𝑦 ∈ ℝ* ∣ -𝑒 𝑦 ∈ 𝐴 } ∖ { +∞ } ) ⊆ ℝ ∧ ∀ 𝑦 ∈ ( { 𝑦 ∈ ℝ* ∣ -𝑒 𝑦 ∈ 𝐴 } ∖ { +∞ } ) - 𝑦 ∈ ( 𝐴 ∖ { -∞ } ) ) ) |
99 |
97 98
|
sylibr |
⊢ ( ¬ +∞ ∈ 𝐴 → ( { 𝑦 ∈ ℝ* ∣ -𝑒 𝑦 ∈ 𝐴 } ∖ { +∞ } ) ⊆ { 𝑦 ∈ ℝ ∣ - 𝑦 ∈ ( 𝐴 ∖ { -∞ } ) } ) |
100 |
59 99
|
eqssd |
⊢ ( ¬ +∞ ∈ 𝐴 → { 𝑦 ∈ ℝ ∣ - 𝑦 ∈ ( 𝐴 ∖ { -∞ } ) } = ( { 𝑦 ∈ ℝ* ∣ -𝑒 𝑦 ∈ 𝐴 } ∖ { +∞ } ) ) |
101 |
100
|
infeq1d |
⊢ ( ¬ +∞ ∈ 𝐴 → inf ( { 𝑦 ∈ ℝ ∣ - 𝑦 ∈ ( 𝐴 ∖ { -∞ } ) } , ℝ* , < ) = inf ( ( { 𝑦 ∈ ℝ* ∣ -𝑒 𝑦 ∈ 𝐴 } ∖ { +∞ } ) , ℝ* , < ) ) |
102 |
|
infxrpnf2 |
⊢ ( { 𝑦 ∈ ℝ* ∣ -𝑒 𝑦 ∈ 𝐴 } ⊆ ℝ* → inf ( ( { 𝑦 ∈ ℝ* ∣ -𝑒 𝑦 ∈ 𝐴 } ∖ { +∞ } ) , ℝ* , < ) = inf ( { 𝑦 ∈ ℝ* ∣ -𝑒 𝑦 ∈ 𝐴 } , ℝ* , < ) ) |
103 |
7 102
|
ax-mp |
⊢ inf ( ( { 𝑦 ∈ ℝ* ∣ -𝑒 𝑦 ∈ 𝐴 } ∖ { +∞ } ) , ℝ* , < ) = inf ( { 𝑦 ∈ ℝ* ∣ -𝑒 𝑦 ∈ 𝐴 } , ℝ* , < ) |
104 |
103
|
a1i |
⊢ ( ¬ +∞ ∈ 𝐴 → inf ( ( { 𝑦 ∈ ℝ* ∣ -𝑒 𝑦 ∈ 𝐴 } ∖ { +∞ } ) , ℝ* , < ) = inf ( { 𝑦 ∈ ℝ* ∣ -𝑒 𝑦 ∈ 𝐴 } , ℝ* , < ) ) |
105 |
101 104
|
eqtr2d |
⊢ ( ¬ +∞ ∈ 𝐴 → inf ( { 𝑦 ∈ ℝ* ∣ -𝑒 𝑦 ∈ 𝐴 } , ℝ* , < ) = inf ( { 𝑦 ∈ ℝ ∣ - 𝑦 ∈ ( 𝐴 ∖ { -∞ } ) } , ℝ* , < ) ) |
106 |
105
|
xnegeqd |
⊢ ( ¬ +∞ ∈ 𝐴 → -𝑒 inf ( { 𝑦 ∈ ℝ* ∣ -𝑒 𝑦 ∈ 𝐴 } , ℝ* , < ) = -𝑒 inf ( { 𝑦 ∈ ℝ ∣ - 𝑦 ∈ ( 𝐴 ∖ { -∞ } ) } , ℝ* , < ) ) |
107 |
106
|
adantl |
⊢ ( ( 𝜑 ∧ ¬ +∞ ∈ 𝐴 ) → -𝑒 inf ( { 𝑦 ∈ ℝ* ∣ -𝑒 𝑦 ∈ 𝐴 } , ℝ* , < ) = -𝑒 inf ( { 𝑦 ∈ ℝ ∣ - 𝑦 ∈ ( 𝐴 ∖ { -∞ } ) } , ℝ* , < ) ) |
108 |
31 35 107
|
3eqtr4d |
⊢ ( ( 𝜑 ∧ ¬ +∞ ∈ 𝐴 ) → sup ( 𝐴 , ℝ* , < ) = -𝑒 inf ( { 𝑦 ∈ ℝ* ∣ -𝑒 𝑦 ∈ 𝐴 } , ℝ* , < ) ) |
109 |
21 108
|
pm2.61dan |
⊢ ( 𝜑 → sup ( 𝐴 , ℝ* , < ) = -𝑒 inf ( { 𝑦 ∈ ℝ* ∣ -𝑒 𝑦 ∈ 𝐴 } , ℝ* , < ) ) |
110 |
|
xnegeq |
⊢ ( 𝑦 = 𝑥 → -𝑒 𝑦 = -𝑒 𝑥 ) |
111 |
110
|
eleq1d |
⊢ ( 𝑦 = 𝑥 → ( -𝑒 𝑦 ∈ 𝐴 ↔ -𝑒 𝑥 ∈ 𝐴 ) ) |
112 |
111
|
cbvrabv |
⊢ { 𝑦 ∈ ℝ* ∣ -𝑒 𝑦 ∈ 𝐴 } = { 𝑥 ∈ ℝ* ∣ -𝑒 𝑥 ∈ 𝐴 } |
113 |
112
|
infeq1i |
⊢ inf ( { 𝑦 ∈ ℝ* ∣ -𝑒 𝑦 ∈ 𝐴 } , ℝ* , < ) = inf ( { 𝑥 ∈ ℝ* ∣ -𝑒 𝑥 ∈ 𝐴 } , ℝ* , < ) |
114 |
113
|
xnegeqi |
⊢ -𝑒 inf ( { 𝑦 ∈ ℝ* ∣ -𝑒 𝑦 ∈ 𝐴 } , ℝ* , < ) = -𝑒 inf ( { 𝑥 ∈ ℝ* ∣ -𝑒 𝑥 ∈ 𝐴 } , ℝ* , < ) |
115 |
114
|
a1i |
⊢ ( 𝜑 → -𝑒 inf ( { 𝑦 ∈ ℝ* ∣ -𝑒 𝑦 ∈ 𝐴 } , ℝ* , < ) = -𝑒 inf ( { 𝑥 ∈ ℝ* ∣ -𝑒 𝑥 ∈ 𝐴 } , ℝ* , < ) ) |
116 |
109 115
|
eqtrd |
⊢ ( 𝜑 → sup ( 𝐴 , ℝ* , < ) = -𝑒 inf ( { 𝑥 ∈ ℝ* ∣ -𝑒 𝑥 ∈ 𝐴 } , ℝ* , < ) ) |