Step |
Hyp |
Ref |
Expression |
1 |
|
supmul.1 |
⊢ 𝐶 = { 𝑧 ∣ ∃ 𝑣 ∈ 𝐴 ∃ 𝑏 ∈ 𝐵 𝑧 = ( 𝑣 · 𝑏 ) } |
2 |
|
supmul.2 |
⊢ ( 𝜑 ↔ ( ( ∀ 𝑥 ∈ 𝐴 0 ≤ 𝑥 ∧ ∀ 𝑥 ∈ 𝐵 0 ≤ 𝑥 ) ∧ ( 𝐴 ⊆ ℝ ∧ 𝐴 ≠ ∅ ∧ ∃ 𝑥 ∈ ℝ ∀ 𝑦 ∈ 𝐴 𝑦 ≤ 𝑥 ) ∧ ( 𝐵 ⊆ ℝ ∧ 𝐵 ≠ ∅ ∧ ∃ 𝑥 ∈ ℝ ∀ 𝑦 ∈ 𝐵 𝑦 ≤ 𝑥 ) ) ) |
3 |
|
vex |
⊢ 𝑤 ∈ V |
4 |
|
oveq1 |
⊢ ( 𝑣 = 𝑎 → ( 𝑣 · 𝑏 ) = ( 𝑎 · 𝑏 ) ) |
5 |
4
|
eqeq2d |
⊢ ( 𝑣 = 𝑎 → ( 𝑧 = ( 𝑣 · 𝑏 ) ↔ 𝑧 = ( 𝑎 · 𝑏 ) ) ) |
6 |
5
|
rexbidv |
⊢ ( 𝑣 = 𝑎 → ( ∃ 𝑏 ∈ 𝐵 𝑧 = ( 𝑣 · 𝑏 ) ↔ ∃ 𝑏 ∈ 𝐵 𝑧 = ( 𝑎 · 𝑏 ) ) ) |
7 |
6
|
cbvrexvw |
⊢ ( ∃ 𝑣 ∈ 𝐴 ∃ 𝑏 ∈ 𝐵 𝑧 = ( 𝑣 · 𝑏 ) ↔ ∃ 𝑎 ∈ 𝐴 ∃ 𝑏 ∈ 𝐵 𝑧 = ( 𝑎 · 𝑏 ) ) |
8 |
|
eqeq1 |
⊢ ( 𝑧 = 𝑤 → ( 𝑧 = ( 𝑎 · 𝑏 ) ↔ 𝑤 = ( 𝑎 · 𝑏 ) ) ) |
9 |
8
|
2rexbidv |
⊢ ( 𝑧 = 𝑤 → ( ∃ 𝑎 ∈ 𝐴 ∃ 𝑏 ∈ 𝐵 𝑧 = ( 𝑎 · 𝑏 ) ↔ ∃ 𝑎 ∈ 𝐴 ∃ 𝑏 ∈ 𝐵 𝑤 = ( 𝑎 · 𝑏 ) ) ) |
10 |
7 9
|
syl5bb |
⊢ ( 𝑧 = 𝑤 → ( ∃ 𝑣 ∈ 𝐴 ∃ 𝑏 ∈ 𝐵 𝑧 = ( 𝑣 · 𝑏 ) ↔ ∃ 𝑎 ∈ 𝐴 ∃ 𝑏 ∈ 𝐵 𝑤 = ( 𝑎 · 𝑏 ) ) ) |
11 |
3 10 1
|
elab2 |
⊢ ( 𝑤 ∈ 𝐶 ↔ ∃ 𝑎 ∈ 𝐴 ∃ 𝑏 ∈ 𝐵 𝑤 = ( 𝑎 · 𝑏 ) ) |
12 |
2
|
simp2bi |
⊢ ( 𝜑 → ( 𝐴 ⊆ ℝ ∧ 𝐴 ≠ ∅ ∧ ∃ 𝑥 ∈ ℝ ∀ 𝑦 ∈ 𝐴 𝑦 ≤ 𝑥 ) ) |
13 |
12
|
simp1d |
⊢ ( 𝜑 → 𝐴 ⊆ ℝ ) |
14 |
13
|
sselda |
⊢ ( ( 𝜑 ∧ 𝑎 ∈ 𝐴 ) → 𝑎 ∈ ℝ ) |
15 |
14
|
adantrr |
⊢ ( ( 𝜑 ∧ ( 𝑎 ∈ 𝐴 ∧ 𝑏 ∈ 𝐵 ) ) → 𝑎 ∈ ℝ ) |
16 |
|
suprcl |
⊢ ( ( 𝐴 ⊆ ℝ ∧ 𝐴 ≠ ∅ ∧ ∃ 𝑥 ∈ ℝ ∀ 𝑦 ∈ 𝐴 𝑦 ≤ 𝑥 ) → sup ( 𝐴 , ℝ , < ) ∈ ℝ ) |
17 |
12 16
|
syl |
⊢ ( 𝜑 → sup ( 𝐴 , ℝ , < ) ∈ ℝ ) |
18 |
17
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑎 ∈ 𝐴 ∧ 𝑏 ∈ 𝐵 ) ) → sup ( 𝐴 , ℝ , < ) ∈ ℝ ) |
19 |
2
|
simp3bi |
⊢ ( 𝜑 → ( 𝐵 ⊆ ℝ ∧ 𝐵 ≠ ∅ ∧ ∃ 𝑥 ∈ ℝ ∀ 𝑦 ∈ 𝐵 𝑦 ≤ 𝑥 ) ) |
20 |
19
|
simp1d |
⊢ ( 𝜑 → 𝐵 ⊆ ℝ ) |
21 |
20
|
sselda |
⊢ ( ( 𝜑 ∧ 𝑏 ∈ 𝐵 ) → 𝑏 ∈ ℝ ) |
22 |
21
|
adantrl |
⊢ ( ( 𝜑 ∧ ( 𝑎 ∈ 𝐴 ∧ 𝑏 ∈ 𝐵 ) ) → 𝑏 ∈ ℝ ) |
23 |
|
suprcl |
⊢ ( ( 𝐵 ⊆ ℝ ∧ 𝐵 ≠ ∅ ∧ ∃ 𝑥 ∈ ℝ ∀ 𝑦 ∈ 𝐵 𝑦 ≤ 𝑥 ) → sup ( 𝐵 , ℝ , < ) ∈ ℝ ) |
24 |
19 23
|
syl |
⊢ ( 𝜑 → sup ( 𝐵 , ℝ , < ) ∈ ℝ ) |
25 |
24
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑎 ∈ 𝐴 ∧ 𝑏 ∈ 𝐵 ) ) → sup ( 𝐵 , ℝ , < ) ∈ ℝ ) |
26 |
|
simp1l |
⊢ ( ( ( ∀ 𝑥 ∈ 𝐴 0 ≤ 𝑥 ∧ ∀ 𝑥 ∈ 𝐵 0 ≤ 𝑥 ) ∧ ( 𝐴 ⊆ ℝ ∧ 𝐴 ≠ ∅ ∧ ∃ 𝑥 ∈ ℝ ∀ 𝑦 ∈ 𝐴 𝑦 ≤ 𝑥 ) ∧ ( 𝐵 ⊆ ℝ ∧ 𝐵 ≠ ∅ ∧ ∃ 𝑥 ∈ ℝ ∀ 𝑦 ∈ 𝐵 𝑦 ≤ 𝑥 ) ) → ∀ 𝑥 ∈ 𝐴 0 ≤ 𝑥 ) |
27 |
2 26
|
sylbi |
⊢ ( 𝜑 → ∀ 𝑥 ∈ 𝐴 0 ≤ 𝑥 ) |
28 |
|
breq2 |
⊢ ( 𝑥 = 𝑎 → ( 0 ≤ 𝑥 ↔ 0 ≤ 𝑎 ) ) |
29 |
28
|
rspccv |
⊢ ( ∀ 𝑥 ∈ 𝐴 0 ≤ 𝑥 → ( 𝑎 ∈ 𝐴 → 0 ≤ 𝑎 ) ) |
30 |
27 29
|
syl |
⊢ ( 𝜑 → ( 𝑎 ∈ 𝐴 → 0 ≤ 𝑎 ) ) |
31 |
30
|
imp |
⊢ ( ( 𝜑 ∧ 𝑎 ∈ 𝐴 ) → 0 ≤ 𝑎 ) |
32 |
31
|
adantrr |
⊢ ( ( 𝜑 ∧ ( 𝑎 ∈ 𝐴 ∧ 𝑏 ∈ 𝐵 ) ) → 0 ≤ 𝑎 ) |
33 |
|
simp1r |
⊢ ( ( ( ∀ 𝑥 ∈ 𝐴 0 ≤ 𝑥 ∧ ∀ 𝑥 ∈ 𝐵 0 ≤ 𝑥 ) ∧ ( 𝐴 ⊆ ℝ ∧ 𝐴 ≠ ∅ ∧ ∃ 𝑥 ∈ ℝ ∀ 𝑦 ∈ 𝐴 𝑦 ≤ 𝑥 ) ∧ ( 𝐵 ⊆ ℝ ∧ 𝐵 ≠ ∅ ∧ ∃ 𝑥 ∈ ℝ ∀ 𝑦 ∈ 𝐵 𝑦 ≤ 𝑥 ) ) → ∀ 𝑥 ∈ 𝐵 0 ≤ 𝑥 ) |
34 |
2 33
|
sylbi |
⊢ ( 𝜑 → ∀ 𝑥 ∈ 𝐵 0 ≤ 𝑥 ) |
35 |
|
breq2 |
⊢ ( 𝑥 = 𝑏 → ( 0 ≤ 𝑥 ↔ 0 ≤ 𝑏 ) ) |
36 |
35
|
rspccv |
⊢ ( ∀ 𝑥 ∈ 𝐵 0 ≤ 𝑥 → ( 𝑏 ∈ 𝐵 → 0 ≤ 𝑏 ) ) |
37 |
34 36
|
syl |
⊢ ( 𝜑 → ( 𝑏 ∈ 𝐵 → 0 ≤ 𝑏 ) ) |
38 |
37
|
imp |
⊢ ( ( 𝜑 ∧ 𝑏 ∈ 𝐵 ) → 0 ≤ 𝑏 ) |
39 |
38
|
adantrl |
⊢ ( ( 𝜑 ∧ ( 𝑎 ∈ 𝐴 ∧ 𝑏 ∈ 𝐵 ) ) → 0 ≤ 𝑏 ) |
40 |
|
suprub |
⊢ ( ( ( 𝐴 ⊆ ℝ ∧ 𝐴 ≠ ∅ ∧ ∃ 𝑥 ∈ ℝ ∀ 𝑦 ∈ 𝐴 𝑦 ≤ 𝑥 ) ∧ 𝑎 ∈ 𝐴 ) → 𝑎 ≤ sup ( 𝐴 , ℝ , < ) ) |
41 |
12 40
|
sylan |
⊢ ( ( 𝜑 ∧ 𝑎 ∈ 𝐴 ) → 𝑎 ≤ sup ( 𝐴 , ℝ , < ) ) |
42 |
41
|
adantrr |
⊢ ( ( 𝜑 ∧ ( 𝑎 ∈ 𝐴 ∧ 𝑏 ∈ 𝐵 ) ) → 𝑎 ≤ sup ( 𝐴 , ℝ , < ) ) |
43 |
|
suprub |
⊢ ( ( ( 𝐵 ⊆ ℝ ∧ 𝐵 ≠ ∅ ∧ ∃ 𝑥 ∈ ℝ ∀ 𝑦 ∈ 𝐵 𝑦 ≤ 𝑥 ) ∧ 𝑏 ∈ 𝐵 ) → 𝑏 ≤ sup ( 𝐵 , ℝ , < ) ) |
44 |
19 43
|
sylan |
⊢ ( ( 𝜑 ∧ 𝑏 ∈ 𝐵 ) → 𝑏 ≤ sup ( 𝐵 , ℝ , < ) ) |
45 |
44
|
adantrl |
⊢ ( ( 𝜑 ∧ ( 𝑎 ∈ 𝐴 ∧ 𝑏 ∈ 𝐵 ) ) → 𝑏 ≤ sup ( 𝐵 , ℝ , < ) ) |
46 |
15 18 22 25 32 39 42 45
|
lemul12ad |
⊢ ( ( 𝜑 ∧ ( 𝑎 ∈ 𝐴 ∧ 𝑏 ∈ 𝐵 ) ) → ( 𝑎 · 𝑏 ) ≤ ( sup ( 𝐴 , ℝ , < ) · sup ( 𝐵 , ℝ , < ) ) ) |
47 |
46
|
ex |
⊢ ( 𝜑 → ( ( 𝑎 ∈ 𝐴 ∧ 𝑏 ∈ 𝐵 ) → ( 𝑎 · 𝑏 ) ≤ ( sup ( 𝐴 , ℝ , < ) · sup ( 𝐵 , ℝ , < ) ) ) ) |
48 |
|
breq1 |
⊢ ( 𝑤 = ( 𝑎 · 𝑏 ) → ( 𝑤 ≤ ( sup ( 𝐴 , ℝ , < ) · sup ( 𝐵 , ℝ , < ) ) ↔ ( 𝑎 · 𝑏 ) ≤ ( sup ( 𝐴 , ℝ , < ) · sup ( 𝐵 , ℝ , < ) ) ) ) |
49 |
48
|
biimprcd |
⊢ ( ( 𝑎 · 𝑏 ) ≤ ( sup ( 𝐴 , ℝ , < ) · sup ( 𝐵 , ℝ , < ) ) → ( 𝑤 = ( 𝑎 · 𝑏 ) → 𝑤 ≤ ( sup ( 𝐴 , ℝ , < ) · sup ( 𝐵 , ℝ , < ) ) ) ) |
50 |
47 49
|
syl6 |
⊢ ( 𝜑 → ( ( 𝑎 ∈ 𝐴 ∧ 𝑏 ∈ 𝐵 ) → ( 𝑤 = ( 𝑎 · 𝑏 ) → 𝑤 ≤ ( sup ( 𝐴 , ℝ , < ) · sup ( 𝐵 , ℝ , < ) ) ) ) ) |
51 |
50
|
rexlimdvv |
⊢ ( 𝜑 → ( ∃ 𝑎 ∈ 𝐴 ∃ 𝑏 ∈ 𝐵 𝑤 = ( 𝑎 · 𝑏 ) → 𝑤 ≤ ( sup ( 𝐴 , ℝ , < ) · sup ( 𝐵 , ℝ , < ) ) ) ) |
52 |
11 51
|
syl5bi |
⊢ ( 𝜑 → ( 𝑤 ∈ 𝐶 → 𝑤 ≤ ( sup ( 𝐴 , ℝ , < ) · sup ( 𝐵 , ℝ , < ) ) ) ) |
53 |
52
|
ralrimiv |
⊢ ( 𝜑 → ∀ 𝑤 ∈ 𝐶 𝑤 ≤ ( sup ( 𝐴 , ℝ , < ) · sup ( 𝐵 , ℝ , < ) ) ) |