Step |
Hyp |
Ref |
Expression |
1 |
|
supmul.1 |
⊢ 𝐶 = { 𝑧 ∣ ∃ 𝑣 ∈ 𝐴 ∃ 𝑏 ∈ 𝐵 𝑧 = ( 𝑣 · 𝑏 ) } |
2 |
|
supmul.2 |
⊢ ( 𝜑 ↔ ( ( ∀ 𝑥 ∈ 𝐴 0 ≤ 𝑥 ∧ ∀ 𝑥 ∈ 𝐵 0 ≤ 𝑥 ) ∧ ( 𝐴 ⊆ ℝ ∧ 𝐴 ≠ ∅ ∧ ∃ 𝑥 ∈ ℝ ∀ 𝑦 ∈ 𝐴 𝑦 ≤ 𝑥 ) ∧ ( 𝐵 ⊆ ℝ ∧ 𝐵 ≠ ∅ ∧ ∃ 𝑥 ∈ ℝ ∀ 𝑦 ∈ 𝐵 𝑦 ≤ 𝑥 ) ) ) |
3 |
|
vex |
⊢ 𝑤 ∈ V |
4 |
|
oveq1 |
⊢ ( 𝑣 = 𝑎 → ( 𝑣 · 𝑏 ) = ( 𝑎 · 𝑏 ) ) |
5 |
4
|
eqeq2d |
⊢ ( 𝑣 = 𝑎 → ( 𝑧 = ( 𝑣 · 𝑏 ) ↔ 𝑧 = ( 𝑎 · 𝑏 ) ) ) |
6 |
5
|
rexbidv |
⊢ ( 𝑣 = 𝑎 → ( ∃ 𝑏 ∈ 𝐵 𝑧 = ( 𝑣 · 𝑏 ) ↔ ∃ 𝑏 ∈ 𝐵 𝑧 = ( 𝑎 · 𝑏 ) ) ) |
7 |
6
|
cbvrexvw |
⊢ ( ∃ 𝑣 ∈ 𝐴 ∃ 𝑏 ∈ 𝐵 𝑧 = ( 𝑣 · 𝑏 ) ↔ ∃ 𝑎 ∈ 𝐴 ∃ 𝑏 ∈ 𝐵 𝑧 = ( 𝑎 · 𝑏 ) ) |
8 |
|
eqeq1 |
⊢ ( 𝑧 = 𝑤 → ( 𝑧 = ( 𝑎 · 𝑏 ) ↔ 𝑤 = ( 𝑎 · 𝑏 ) ) ) |
9 |
8
|
2rexbidv |
⊢ ( 𝑧 = 𝑤 → ( ∃ 𝑎 ∈ 𝐴 ∃ 𝑏 ∈ 𝐵 𝑧 = ( 𝑎 · 𝑏 ) ↔ ∃ 𝑎 ∈ 𝐴 ∃ 𝑏 ∈ 𝐵 𝑤 = ( 𝑎 · 𝑏 ) ) ) |
10 |
7 9
|
syl5bb |
⊢ ( 𝑧 = 𝑤 → ( ∃ 𝑣 ∈ 𝐴 ∃ 𝑏 ∈ 𝐵 𝑧 = ( 𝑣 · 𝑏 ) ↔ ∃ 𝑎 ∈ 𝐴 ∃ 𝑏 ∈ 𝐵 𝑤 = ( 𝑎 · 𝑏 ) ) ) |
11 |
3 10 1
|
elab2 |
⊢ ( 𝑤 ∈ 𝐶 ↔ ∃ 𝑎 ∈ 𝐴 ∃ 𝑏 ∈ 𝐵 𝑤 = ( 𝑎 · 𝑏 ) ) |
12 |
2
|
simp2bi |
⊢ ( 𝜑 → ( 𝐴 ⊆ ℝ ∧ 𝐴 ≠ ∅ ∧ ∃ 𝑥 ∈ ℝ ∀ 𝑦 ∈ 𝐴 𝑦 ≤ 𝑥 ) ) |
13 |
12
|
simp1d |
⊢ ( 𝜑 → 𝐴 ⊆ ℝ ) |
14 |
13
|
sseld |
⊢ ( 𝜑 → ( 𝑎 ∈ 𝐴 → 𝑎 ∈ ℝ ) ) |
15 |
2
|
simp3bi |
⊢ ( 𝜑 → ( 𝐵 ⊆ ℝ ∧ 𝐵 ≠ ∅ ∧ ∃ 𝑥 ∈ ℝ ∀ 𝑦 ∈ 𝐵 𝑦 ≤ 𝑥 ) ) |
16 |
15
|
simp1d |
⊢ ( 𝜑 → 𝐵 ⊆ ℝ ) |
17 |
16
|
sseld |
⊢ ( 𝜑 → ( 𝑏 ∈ 𝐵 → 𝑏 ∈ ℝ ) ) |
18 |
14 17
|
anim12d |
⊢ ( 𝜑 → ( ( 𝑎 ∈ 𝐴 ∧ 𝑏 ∈ 𝐵 ) → ( 𝑎 ∈ ℝ ∧ 𝑏 ∈ ℝ ) ) ) |
19 |
|
remulcl |
⊢ ( ( 𝑎 ∈ ℝ ∧ 𝑏 ∈ ℝ ) → ( 𝑎 · 𝑏 ) ∈ ℝ ) |
20 |
18 19
|
syl6 |
⊢ ( 𝜑 → ( ( 𝑎 ∈ 𝐴 ∧ 𝑏 ∈ 𝐵 ) → ( 𝑎 · 𝑏 ) ∈ ℝ ) ) |
21 |
|
eleq1a |
⊢ ( ( 𝑎 · 𝑏 ) ∈ ℝ → ( 𝑤 = ( 𝑎 · 𝑏 ) → 𝑤 ∈ ℝ ) ) |
22 |
20 21
|
syl6 |
⊢ ( 𝜑 → ( ( 𝑎 ∈ 𝐴 ∧ 𝑏 ∈ 𝐵 ) → ( 𝑤 = ( 𝑎 · 𝑏 ) → 𝑤 ∈ ℝ ) ) ) |
23 |
22
|
rexlimdvv |
⊢ ( 𝜑 → ( ∃ 𝑎 ∈ 𝐴 ∃ 𝑏 ∈ 𝐵 𝑤 = ( 𝑎 · 𝑏 ) → 𝑤 ∈ ℝ ) ) |
24 |
11 23
|
syl5bi |
⊢ ( 𝜑 → ( 𝑤 ∈ 𝐶 → 𝑤 ∈ ℝ ) ) |
25 |
24
|
ssrdv |
⊢ ( 𝜑 → 𝐶 ⊆ ℝ ) |
26 |
12
|
simp2d |
⊢ ( 𝜑 → 𝐴 ≠ ∅ ) |
27 |
15
|
simp2d |
⊢ ( 𝜑 → 𝐵 ≠ ∅ ) |
28 |
|
ovex |
⊢ ( 𝑎 · 𝑏 ) ∈ V |
29 |
28
|
isseti |
⊢ ∃ 𝑤 𝑤 = ( 𝑎 · 𝑏 ) |
30 |
29
|
rgenw |
⊢ ∀ 𝑏 ∈ 𝐵 ∃ 𝑤 𝑤 = ( 𝑎 · 𝑏 ) |
31 |
|
r19.2z |
⊢ ( ( 𝐵 ≠ ∅ ∧ ∀ 𝑏 ∈ 𝐵 ∃ 𝑤 𝑤 = ( 𝑎 · 𝑏 ) ) → ∃ 𝑏 ∈ 𝐵 ∃ 𝑤 𝑤 = ( 𝑎 · 𝑏 ) ) |
32 |
27 30 31
|
sylancl |
⊢ ( 𝜑 → ∃ 𝑏 ∈ 𝐵 ∃ 𝑤 𝑤 = ( 𝑎 · 𝑏 ) ) |
33 |
|
rexcom4 |
⊢ ( ∃ 𝑏 ∈ 𝐵 ∃ 𝑤 𝑤 = ( 𝑎 · 𝑏 ) ↔ ∃ 𝑤 ∃ 𝑏 ∈ 𝐵 𝑤 = ( 𝑎 · 𝑏 ) ) |
34 |
32 33
|
sylib |
⊢ ( 𝜑 → ∃ 𝑤 ∃ 𝑏 ∈ 𝐵 𝑤 = ( 𝑎 · 𝑏 ) ) |
35 |
34
|
ralrimivw |
⊢ ( 𝜑 → ∀ 𝑎 ∈ 𝐴 ∃ 𝑤 ∃ 𝑏 ∈ 𝐵 𝑤 = ( 𝑎 · 𝑏 ) ) |
36 |
|
r19.2z |
⊢ ( ( 𝐴 ≠ ∅ ∧ ∀ 𝑎 ∈ 𝐴 ∃ 𝑤 ∃ 𝑏 ∈ 𝐵 𝑤 = ( 𝑎 · 𝑏 ) ) → ∃ 𝑎 ∈ 𝐴 ∃ 𝑤 ∃ 𝑏 ∈ 𝐵 𝑤 = ( 𝑎 · 𝑏 ) ) |
37 |
26 35 36
|
syl2anc |
⊢ ( 𝜑 → ∃ 𝑎 ∈ 𝐴 ∃ 𝑤 ∃ 𝑏 ∈ 𝐵 𝑤 = ( 𝑎 · 𝑏 ) ) |
38 |
|
rexcom4 |
⊢ ( ∃ 𝑎 ∈ 𝐴 ∃ 𝑤 ∃ 𝑏 ∈ 𝐵 𝑤 = ( 𝑎 · 𝑏 ) ↔ ∃ 𝑤 ∃ 𝑎 ∈ 𝐴 ∃ 𝑏 ∈ 𝐵 𝑤 = ( 𝑎 · 𝑏 ) ) |
39 |
37 38
|
sylib |
⊢ ( 𝜑 → ∃ 𝑤 ∃ 𝑎 ∈ 𝐴 ∃ 𝑏 ∈ 𝐵 𝑤 = ( 𝑎 · 𝑏 ) ) |
40 |
|
n0 |
⊢ ( 𝐶 ≠ ∅ ↔ ∃ 𝑤 𝑤 ∈ 𝐶 ) |
41 |
11
|
exbii |
⊢ ( ∃ 𝑤 𝑤 ∈ 𝐶 ↔ ∃ 𝑤 ∃ 𝑎 ∈ 𝐴 ∃ 𝑏 ∈ 𝐵 𝑤 = ( 𝑎 · 𝑏 ) ) |
42 |
40 41
|
bitri |
⊢ ( 𝐶 ≠ ∅ ↔ ∃ 𝑤 ∃ 𝑎 ∈ 𝐴 ∃ 𝑏 ∈ 𝐵 𝑤 = ( 𝑎 · 𝑏 ) ) |
43 |
39 42
|
sylibr |
⊢ ( 𝜑 → 𝐶 ≠ ∅ ) |
44 |
|
suprcl |
⊢ ( ( 𝐴 ⊆ ℝ ∧ 𝐴 ≠ ∅ ∧ ∃ 𝑥 ∈ ℝ ∀ 𝑦 ∈ 𝐴 𝑦 ≤ 𝑥 ) → sup ( 𝐴 , ℝ , < ) ∈ ℝ ) |
45 |
12 44
|
syl |
⊢ ( 𝜑 → sup ( 𝐴 , ℝ , < ) ∈ ℝ ) |
46 |
|
suprcl |
⊢ ( ( 𝐵 ⊆ ℝ ∧ 𝐵 ≠ ∅ ∧ ∃ 𝑥 ∈ ℝ ∀ 𝑦 ∈ 𝐵 𝑦 ≤ 𝑥 ) → sup ( 𝐵 , ℝ , < ) ∈ ℝ ) |
47 |
15 46
|
syl |
⊢ ( 𝜑 → sup ( 𝐵 , ℝ , < ) ∈ ℝ ) |
48 |
45 47
|
remulcld |
⊢ ( 𝜑 → ( sup ( 𝐴 , ℝ , < ) · sup ( 𝐵 , ℝ , < ) ) ∈ ℝ ) |
49 |
1 2
|
supmullem1 |
⊢ ( 𝜑 → ∀ 𝑤 ∈ 𝐶 𝑤 ≤ ( sup ( 𝐴 , ℝ , < ) · sup ( 𝐵 , ℝ , < ) ) ) |
50 |
|
brralrspcev |
⊢ ( ( ( sup ( 𝐴 , ℝ , < ) · sup ( 𝐵 , ℝ , < ) ) ∈ ℝ ∧ ∀ 𝑤 ∈ 𝐶 𝑤 ≤ ( sup ( 𝐴 , ℝ , < ) · sup ( 𝐵 , ℝ , < ) ) ) → ∃ 𝑥 ∈ ℝ ∀ 𝑤 ∈ 𝐶 𝑤 ≤ 𝑥 ) |
51 |
48 49 50
|
syl2anc |
⊢ ( 𝜑 → ∃ 𝑥 ∈ ℝ ∀ 𝑤 ∈ 𝐶 𝑤 ≤ 𝑥 ) |
52 |
25 43 51
|
3jca |
⊢ ( 𝜑 → ( 𝐶 ⊆ ℝ ∧ 𝐶 ≠ ∅ ∧ ∃ 𝑥 ∈ ℝ ∀ 𝑤 ∈ 𝐶 𝑤 ≤ 𝑥 ) ) |