Metamath Proof Explorer


Theorem supnub

Description: An upper bound is not less than the supremum. (Contributed by NM, 13-Oct-2004)

Ref Expression
Hypotheses supmo.1 ( 𝜑𝑅 Or 𝐴 )
supcl.2 ( 𝜑 → ∃ 𝑥𝐴 ( ∀ 𝑦𝐵 ¬ 𝑥 𝑅 𝑦 ∧ ∀ 𝑦𝐴 ( 𝑦 𝑅 𝑥 → ∃ 𝑧𝐵 𝑦 𝑅 𝑧 ) ) )
Assertion supnub ( 𝜑 → ( ( 𝐶𝐴 ∧ ∀ 𝑧𝐵 ¬ 𝐶 𝑅 𝑧 ) → ¬ 𝐶 𝑅 sup ( 𝐵 , 𝐴 , 𝑅 ) ) )

Proof

Step Hyp Ref Expression
1 supmo.1 ( 𝜑𝑅 Or 𝐴 )
2 supcl.2 ( 𝜑 → ∃ 𝑥𝐴 ( ∀ 𝑦𝐵 ¬ 𝑥 𝑅 𝑦 ∧ ∀ 𝑦𝐴 ( 𝑦 𝑅 𝑥 → ∃ 𝑧𝐵 𝑦 𝑅 𝑧 ) ) )
3 1 2 suplub ( 𝜑 → ( ( 𝐶𝐴𝐶 𝑅 sup ( 𝐵 , 𝐴 , 𝑅 ) ) → ∃ 𝑧𝐵 𝐶 𝑅 𝑧 ) )
4 3 expdimp ( ( 𝜑𝐶𝐴 ) → ( 𝐶 𝑅 sup ( 𝐵 , 𝐴 , 𝑅 ) → ∃ 𝑧𝐵 𝐶 𝑅 𝑧 ) )
5 dfrex2 ( ∃ 𝑧𝐵 𝐶 𝑅 𝑧 ↔ ¬ ∀ 𝑧𝐵 ¬ 𝐶 𝑅 𝑧 )
6 4 5 syl6ib ( ( 𝜑𝐶𝐴 ) → ( 𝐶 𝑅 sup ( 𝐵 , 𝐴 , 𝑅 ) → ¬ ∀ 𝑧𝐵 ¬ 𝐶 𝑅 𝑧 ) )
7 6 con2d ( ( 𝜑𝐶𝐴 ) → ( ∀ 𝑧𝐵 ¬ 𝐶 𝑅 𝑧 → ¬ 𝐶 𝑅 sup ( 𝐵 , 𝐴 , 𝑅 ) ) )
8 7 expimpd ( 𝜑 → ( ( 𝐶𝐴 ∧ ∀ 𝑧𝐵 ¬ 𝐶 𝑅 𝑧 ) → ¬ 𝐶 𝑅 sup ( 𝐵 , 𝐴 , 𝑅 ) ) )