| Step | 
						Hyp | 
						Ref | 
						Expression | 
					
						
							| 1 | 
							
								
							 | 
							supmo.1 | 
							⊢ ( 𝜑  →  𝑅  Or  𝐴 )  | 
						
						
							| 2 | 
							
								
							 | 
							supcl.2 | 
							⊢ ( 𝜑  →  ∃ 𝑥  ∈  𝐴 ( ∀ 𝑦  ∈  𝐵 ¬  𝑥 𝑅 𝑦  ∧  ∀ 𝑦  ∈  𝐴 ( 𝑦 𝑅 𝑥  →  ∃ 𝑧  ∈  𝐵 𝑦 𝑅 𝑧 ) ) )  | 
						
						
							| 3 | 
							
								1 2
							 | 
							suplub | 
							⊢ ( 𝜑  →  ( ( 𝐶  ∈  𝐴  ∧  𝐶 𝑅 sup ( 𝐵 ,  𝐴 ,  𝑅 ) )  →  ∃ 𝑧  ∈  𝐵 𝐶 𝑅 𝑧 ) )  | 
						
						
							| 4 | 
							
								3
							 | 
							expdimp | 
							⊢ ( ( 𝜑  ∧  𝐶  ∈  𝐴 )  →  ( 𝐶 𝑅 sup ( 𝐵 ,  𝐴 ,  𝑅 )  →  ∃ 𝑧  ∈  𝐵 𝐶 𝑅 𝑧 ) )  | 
						
						
							| 5 | 
							
								
							 | 
							dfrex2 | 
							⊢ ( ∃ 𝑧  ∈  𝐵 𝐶 𝑅 𝑧  ↔  ¬  ∀ 𝑧  ∈  𝐵 ¬  𝐶 𝑅 𝑧 )  | 
						
						
							| 6 | 
							
								4 5
							 | 
							imbitrdi | 
							⊢ ( ( 𝜑  ∧  𝐶  ∈  𝐴 )  →  ( 𝐶 𝑅 sup ( 𝐵 ,  𝐴 ,  𝑅 )  →  ¬  ∀ 𝑧  ∈  𝐵 ¬  𝐶 𝑅 𝑧 ) )  | 
						
						
							| 7 | 
							
								6
							 | 
							con2d | 
							⊢ ( ( 𝜑  ∧  𝐶  ∈  𝐴 )  →  ( ∀ 𝑧  ∈  𝐵 ¬  𝐶 𝑅 𝑧  →  ¬  𝐶 𝑅 sup ( 𝐵 ,  𝐴 ,  𝑅 ) ) )  | 
						
						
							| 8 | 
							
								7
							 | 
							expimpd | 
							⊢ ( 𝜑  →  ( ( 𝐶  ∈  𝐴  ∧  ∀ 𝑧  ∈  𝐵 ¬  𝐶 𝑅 𝑧 )  →  ¬  𝐶 𝑅 sup ( 𝐵 ,  𝐴 ,  𝑅 ) ) )  |