Metamath Proof Explorer


Theorem supp0prc

Description: The support of a class is empty if either the class or the "zero" is a proper class. (Contributed by AV, 28-May-2019)

Ref Expression
Assertion supp0prc ( ¬ ( 𝑋 ∈ V ∧ 𝑍 ∈ V ) → ( 𝑋 supp 𝑍 ) = ∅ )

Proof

Step Hyp Ref Expression
1 df-supp supp = ( 𝑥 ∈ V , 𝑧 ∈ V ↦ { 𝑖 ∈ dom 𝑥 ∣ ( 𝑥 “ { 𝑖 } ) ≠ { 𝑧 } } )
2 1 mpondm0 ( ¬ ( 𝑋 ∈ V ∧ 𝑍 ∈ V ) → ( 𝑋 supp 𝑍 ) = ∅ )