Description: The support of a class is empty if either the class or the "zero" is a proper class. (Contributed by AV, 28-May-2019)
Ref | Expression | ||
---|---|---|---|
Assertion | supp0prc | ⊢ ( ¬ ( 𝑋 ∈ V ∧ 𝑍 ∈ V ) → ( 𝑋 supp 𝑍 ) = ∅ ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-supp | ⊢ supp = ( 𝑥 ∈ V , 𝑧 ∈ V ↦ { 𝑖 ∈ dom 𝑥 ∣ ( 𝑥 “ { 𝑖 } ) ≠ { 𝑧 } } ) | |
2 | 1 | mpondm0 | ⊢ ( ¬ ( 𝑋 ∈ V ∧ 𝑍 ∈ V ) → ( 𝑋 supp 𝑍 ) = ∅ ) |