| Step | Hyp | Ref | Expression | 
						
							| 1 |  | coexg | ⊢ ( ( 𝐹  ∈  𝑉  ∧  𝐺  ∈  𝑊 )  →  ( 𝐹  ∘  𝐺 )  ∈  V ) | 
						
							| 2 |  | simpl | ⊢ ( ( 𝑍  ∈  V  ∧  ( 𝐹  ∈  𝑉  ∧  𝐺  ∈  𝑊 ) )  →  𝑍  ∈  V ) | 
						
							| 3 |  | suppimacnv | ⊢ ( ( ( 𝐹  ∘  𝐺 )  ∈  V  ∧  𝑍  ∈  V )  →  ( ( 𝐹  ∘  𝐺 )  supp  𝑍 )  =  ( ◡ ( 𝐹  ∘  𝐺 )  “  ( V  ∖  { 𝑍 } ) ) ) | 
						
							| 4 | 1 2 3 | syl2an2 | ⊢ ( ( 𝑍  ∈  V  ∧  ( 𝐹  ∈  𝑉  ∧  𝐺  ∈  𝑊 ) )  →  ( ( 𝐹  ∘  𝐺 )  supp  𝑍 )  =  ( ◡ ( 𝐹  ∘  𝐺 )  “  ( V  ∖  { 𝑍 } ) ) ) | 
						
							| 5 |  | cnvco | ⊢ ◡ ( 𝐹  ∘  𝐺 )  =  ( ◡ 𝐺  ∘  ◡ 𝐹 ) | 
						
							| 6 | 5 | imaeq1i | ⊢ ( ◡ ( 𝐹  ∘  𝐺 )  “  ( V  ∖  { 𝑍 } ) )  =  ( ( ◡ 𝐺  ∘  ◡ 𝐹 )  “  ( V  ∖  { 𝑍 } ) ) | 
						
							| 7 | 6 | a1i | ⊢ ( ( 𝑍  ∈  V  ∧  ( 𝐹  ∈  𝑉  ∧  𝐺  ∈  𝑊 ) )  →  ( ◡ ( 𝐹  ∘  𝐺 )  “  ( V  ∖  { 𝑍 } ) )  =  ( ( ◡ 𝐺  ∘  ◡ 𝐹 )  “  ( V  ∖  { 𝑍 } ) ) ) | 
						
							| 8 |  | imaco | ⊢ ( ( ◡ 𝐺  ∘  ◡ 𝐹 )  “  ( V  ∖  { 𝑍 } ) )  =  ( ◡ 𝐺  “  ( ◡ 𝐹  “  ( V  ∖  { 𝑍 } ) ) ) | 
						
							| 9 |  | simprl | ⊢ ( ( 𝑍  ∈  V  ∧  ( 𝐹  ∈  𝑉  ∧  𝐺  ∈  𝑊 ) )  →  𝐹  ∈  𝑉 ) | 
						
							| 10 |  | suppimacnv | ⊢ ( ( 𝐹  ∈  𝑉  ∧  𝑍  ∈  V )  →  ( 𝐹  supp  𝑍 )  =  ( ◡ 𝐹  “  ( V  ∖  { 𝑍 } ) ) ) | 
						
							| 11 | 9 2 10 | syl2anc | ⊢ ( ( 𝑍  ∈  V  ∧  ( 𝐹  ∈  𝑉  ∧  𝐺  ∈  𝑊 ) )  →  ( 𝐹  supp  𝑍 )  =  ( ◡ 𝐹  “  ( V  ∖  { 𝑍 } ) ) ) | 
						
							| 12 | 11 | imaeq2d | ⊢ ( ( 𝑍  ∈  V  ∧  ( 𝐹  ∈  𝑉  ∧  𝐺  ∈  𝑊 ) )  →  ( ◡ 𝐺  “  ( 𝐹  supp  𝑍 ) )  =  ( ◡ 𝐺  “  ( ◡ 𝐹  “  ( V  ∖  { 𝑍 } ) ) ) ) | 
						
							| 13 | 8 12 | eqtr4id | ⊢ ( ( 𝑍  ∈  V  ∧  ( 𝐹  ∈  𝑉  ∧  𝐺  ∈  𝑊 ) )  →  ( ( ◡ 𝐺  ∘  ◡ 𝐹 )  “  ( V  ∖  { 𝑍 } ) )  =  ( ◡ 𝐺  “  ( 𝐹  supp  𝑍 ) ) ) | 
						
							| 14 | 4 7 13 | 3eqtrd | ⊢ ( ( 𝑍  ∈  V  ∧  ( 𝐹  ∈  𝑉  ∧  𝐺  ∈  𝑊 ) )  →  ( ( 𝐹  ∘  𝐺 )  supp  𝑍 )  =  ( ◡ 𝐺  “  ( 𝐹  supp  𝑍 ) ) ) | 
						
							| 15 | 14 | ex | ⊢ ( 𝑍  ∈  V  →  ( ( 𝐹  ∈  𝑉  ∧  𝐺  ∈  𝑊 )  →  ( ( 𝐹  ∘  𝐺 )  supp  𝑍 )  =  ( ◡ 𝐺  “  ( 𝐹  supp  𝑍 ) ) ) ) | 
						
							| 16 |  | prcnel | ⊢ ( ¬  𝑍  ∈  V  →  ¬  𝑍  ∈  V ) | 
						
							| 17 | 16 | intnand | ⊢ ( ¬  𝑍  ∈  V  →  ¬  ( ( 𝐹  ∘  𝐺 )  ∈  V  ∧  𝑍  ∈  V ) ) | 
						
							| 18 |  | supp0prc | ⊢ ( ¬  ( ( 𝐹  ∘  𝐺 )  ∈  V  ∧  𝑍  ∈  V )  →  ( ( 𝐹  ∘  𝐺 )  supp  𝑍 )  =  ∅ ) | 
						
							| 19 | 17 18 | syl | ⊢ ( ¬  𝑍  ∈  V  →  ( ( 𝐹  ∘  𝐺 )  supp  𝑍 )  =  ∅ ) | 
						
							| 20 | 16 | intnand | ⊢ ( ¬  𝑍  ∈  V  →  ¬  ( 𝐹  ∈  V  ∧  𝑍  ∈  V ) ) | 
						
							| 21 |  | supp0prc | ⊢ ( ¬  ( 𝐹  ∈  V  ∧  𝑍  ∈  V )  →  ( 𝐹  supp  𝑍 )  =  ∅ ) | 
						
							| 22 | 20 21 | syl | ⊢ ( ¬  𝑍  ∈  V  →  ( 𝐹  supp  𝑍 )  =  ∅ ) | 
						
							| 23 | 22 | imaeq2d | ⊢ ( ¬  𝑍  ∈  V  →  ( ◡ 𝐺  “  ( 𝐹  supp  𝑍 ) )  =  ( ◡ 𝐺  “  ∅ ) ) | 
						
							| 24 |  | ima0 | ⊢ ( ◡ 𝐺  “  ∅ )  =  ∅ | 
						
							| 25 | 23 24 | eqtrdi | ⊢ ( ¬  𝑍  ∈  V  →  ( ◡ 𝐺  “  ( 𝐹  supp  𝑍 ) )  =  ∅ ) | 
						
							| 26 | 19 25 | eqtr4d | ⊢ ( ¬  𝑍  ∈  V  →  ( ( 𝐹  ∘  𝐺 )  supp  𝑍 )  =  ( ◡ 𝐺  “  ( 𝐹  supp  𝑍 ) ) ) | 
						
							| 27 | 26 | a1d | ⊢ ( ¬  𝑍  ∈  V  →  ( ( 𝐹  ∈  𝑉  ∧  𝐺  ∈  𝑊 )  →  ( ( 𝐹  ∘  𝐺 )  supp  𝑍 )  =  ( ◡ 𝐺  “  ( 𝐹  supp  𝑍 ) ) ) ) | 
						
							| 28 | 15 27 | pm2.61i | ⊢ ( ( 𝐹  ∈  𝑉  ∧  𝐺  ∈  𝑊 )  →  ( ( 𝐹  ∘  𝐺 )  supp  𝑍 )  =  ( ◡ 𝐺  “  ( 𝐹  supp  𝑍 ) ) ) |