Step |
Hyp |
Ref |
Expression |
1 |
|
coexg |
⊢ ( ( 𝐹 ∈ 𝑉 ∧ 𝐺 ∈ 𝑊 ) → ( 𝐹 ∘ 𝐺 ) ∈ V ) |
2 |
|
simpl |
⊢ ( ( 𝑍 ∈ V ∧ ( 𝐹 ∈ 𝑉 ∧ 𝐺 ∈ 𝑊 ) ) → 𝑍 ∈ V ) |
3 |
|
suppimacnv |
⊢ ( ( ( 𝐹 ∘ 𝐺 ) ∈ V ∧ 𝑍 ∈ V ) → ( ( 𝐹 ∘ 𝐺 ) supp 𝑍 ) = ( ◡ ( 𝐹 ∘ 𝐺 ) “ ( V ∖ { 𝑍 } ) ) ) |
4 |
1 2 3
|
syl2an2 |
⊢ ( ( 𝑍 ∈ V ∧ ( 𝐹 ∈ 𝑉 ∧ 𝐺 ∈ 𝑊 ) ) → ( ( 𝐹 ∘ 𝐺 ) supp 𝑍 ) = ( ◡ ( 𝐹 ∘ 𝐺 ) “ ( V ∖ { 𝑍 } ) ) ) |
5 |
|
cnvco |
⊢ ◡ ( 𝐹 ∘ 𝐺 ) = ( ◡ 𝐺 ∘ ◡ 𝐹 ) |
6 |
5
|
imaeq1i |
⊢ ( ◡ ( 𝐹 ∘ 𝐺 ) “ ( V ∖ { 𝑍 } ) ) = ( ( ◡ 𝐺 ∘ ◡ 𝐹 ) “ ( V ∖ { 𝑍 } ) ) |
7 |
6
|
a1i |
⊢ ( ( 𝑍 ∈ V ∧ ( 𝐹 ∈ 𝑉 ∧ 𝐺 ∈ 𝑊 ) ) → ( ◡ ( 𝐹 ∘ 𝐺 ) “ ( V ∖ { 𝑍 } ) ) = ( ( ◡ 𝐺 ∘ ◡ 𝐹 ) “ ( V ∖ { 𝑍 } ) ) ) |
8 |
|
imaco |
⊢ ( ( ◡ 𝐺 ∘ ◡ 𝐹 ) “ ( V ∖ { 𝑍 } ) ) = ( ◡ 𝐺 “ ( ◡ 𝐹 “ ( V ∖ { 𝑍 } ) ) ) |
9 |
|
simprl |
⊢ ( ( 𝑍 ∈ V ∧ ( 𝐹 ∈ 𝑉 ∧ 𝐺 ∈ 𝑊 ) ) → 𝐹 ∈ 𝑉 ) |
10 |
|
suppimacnv |
⊢ ( ( 𝐹 ∈ 𝑉 ∧ 𝑍 ∈ V ) → ( 𝐹 supp 𝑍 ) = ( ◡ 𝐹 “ ( V ∖ { 𝑍 } ) ) ) |
11 |
9 2 10
|
syl2anc |
⊢ ( ( 𝑍 ∈ V ∧ ( 𝐹 ∈ 𝑉 ∧ 𝐺 ∈ 𝑊 ) ) → ( 𝐹 supp 𝑍 ) = ( ◡ 𝐹 “ ( V ∖ { 𝑍 } ) ) ) |
12 |
11
|
imaeq2d |
⊢ ( ( 𝑍 ∈ V ∧ ( 𝐹 ∈ 𝑉 ∧ 𝐺 ∈ 𝑊 ) ) → ( ◡ 𝐺 “ ( 𝐹 supp 𝑍 ) ) = ( ◡ 𝐺 “ ( ◡ 𝐹 “ ( V ∖ { 𝑍 } ) ) ) ) |
13 |
8 12
|
eqtr4id |
⊢ ( ( 𝑍 ∈ V ∧ ( 𝐹 ∈ 𝑉 ∧ 𝐺 ∈ 𝑊 ) ) → ( ( ◡ 𝐺 ∘ ◡ 𝐹 ) “ ( V ∖ { 𝑍 } ) ) = ( ◡ 𝐺 “ ( 𝐹 supp 𝑍 ) ) ) |
14 |
4 7 13
|
3eqtrd |
⊢ ( ( 𝑍 ∈ V ∧ ( 𝐹 ∈ 𝑉 ∧ 𝐺 ∈ 𝑊 ) ) → ( ( 𝐹 ∘ 𝐺 ) supp 𝑍 ) = ( ◡ 𝐺 “ ( 𝐹 supp 𝑍 ) ) ) |
15 |
14
|
ex |
⊢ ( 𝑍 ∈ V → ( ( 𝐹 ∈ 𝑉 ∧ 𝐺 ∈ 𝑊 ) → ( ( 𝐹 ∘ 𝐺 ) supp 𝑍 ) = ( ◡ 𝐺 “ ( 𝐹 supp 𝑍 ) ) ) ) |
16 |
|
prcnel |
⊢ ( ¬ 𝑍 ∈ V → ¬ 𝑍 ∈ V ) |
17 |
16
|
intnand |
⊢ ( ¬ 𝑍 ∈ V → ¬ ( ( 𝐹 ∘ 𝐺 ) ∈ V ∧ 𝑍 ∈ V ) ) |
18 |
|
supp0prc |
⊢ ( ¬ ( ( 𝐹 ∘ 𝐺 ) ∈ V ∧ 𝑍 ∈ V ) → ( ( 𝐹 ∘ 𝐺 ) supp 𝑍 ) = ∅ ) |
19 |
17 18
|
syl |
⊢ ( ¬ 𝑍 ∈ V → ( ( 𝐹 ∘ 𝐺 ) supp 𝑍 ) = ∅ ) |
20 |
16
|
intnand |
⊢ ( ¬ 𝑍 ∈ V → ¬ ( 𝐹 ∈ V ∧ 𝑍 ∈ V ) ) |
21 |
|
supp0prc |
⊢ ( ¬ ( 𝐹 ∈ V ∧ 𝑍 ∈ V ) → ( 𝐹 supp 𝑍 ) = ∅ ) |
22 |
20 21
|
syl |
⊢ ( ¬ 𝑍 ∈ V → ( 𝐹 supp 𝑍 ) = ∅ ) |
23 |
22
|
imaeq2d |
⊢ ( ¬ 𝑍 ∈ V → ( ◡ 𝐺 “ ( 𝐹 supp 𝑍 ) ) = ( ◡ 𝐺 “ ∅ ) ) |
24 |
|
ima0 |
⊢ ( ◡ 𝐺 “ ∅ ) = ∅ |
25 |
23 24
|
eqtrdi |
⊢ ( ¬ 𝑍 ∈ V → ( ◡ 𝐺 “ ( 𝐹 supp 𝑍 ) ) = ∅ ) |
26 |
19 25
|
eqtr4d |
⊢ ( ¬ 𝑍 ∈ V → ( ( 𝐹 ∘ 𝐺 ) supp 𝑍 ) = ( ◡ 𝐺 “ ( 𝐹 supp 𝑍 ) ) ) |
27 |
26
|
a1d |
⊢ ( ¬ 𝑍 ∈ V → ( ( 𝐹 ∈ 𝑉 ∧ 𝐺 ∈ 𝑊 ) → ( ( 𝐹 ∘ 𝐺 ) supp 𝑍 ) = ( ◡ 𝐺 “ ( 𝐹 supp 𝑍 ) ) ) ) |
28 |
15 27
|
pm2.61i |
⊢ ( ( 𝐹 ∈ 𝑉 ∧ 𝐺 ∈ 𝑊 ) → ( ( 𝐹 ∘ 𝐺 ) supp 𝑍 ) = ( ◡ 𝐺 “ ( 𝐹 supp 𝑍 ) ) ) |