| Step | Hyp | Ref | Expression | 
						
							| 1 |  | suppcoss.f | ⊢ ( 𝜑  →  𝐹  Fn  𝐴 ) | 
						
							| 2 |  | suppcoss.g | ⊢ ( 𝜑  →  𝐺 : 𝐵 ⟶ 𝐴 ) | 
						
							| 3 |  | suppcoss.b | ⊢ ( 𝜑  →  𝐵  ∈  𝑊 ) | 
						
							| 4 |  | suppcoss.y | ⊢ ( 𝜑  →  𝑌  ∈  𝑉 ) | 
						
							| 5 |  | suppcoss.1 | ⊢ ( 𝜑  →  ( 𝐹 ‘ 𝑌 )  =  𝑍 ) | 
						
							| 6 |  | dffn3 | ⊢ ( 𝐹  Fn  𝐴  ↔  𝐹 : 𝐴 ⟶ ran  𝐹 ) | 
						
							| 7 | 1 6 | sylib | ⊢ ( 𝜑  →  𝐹 : 𝐴 ⟶ ran  𝐹 ) | 
						
							| 8 | 7 2 | fcod | ⊢ ( 𝜑  →  ( 𝐹  ∘  𝐺 ) : 𝐵 ⟶ ran  𝐹 ) | 
						
							| 9 |  | eldif | ⊢ ( 𝑘  ∈  ( 𝐵  ∖  ( 𝐺  supp  𝑌 ) )  ↔  ( 𝑘  ∈  𝐵  ∧  ¬  𝑘  ∈  ( 𝐺  supp  𝑌 ) ) ) | 
						
							| 10 | 2 | ffnd | ⊢ ( 𝜑  →  𝐺  Fn  𝐵 ) | 
						
							| 11 |  | elsuppfn | ⊢ ( ( 𝐺  Fn  𝐵  ∧  𝐵  ∈  𝑊  ∧  𝑌  ∈  𝑉 )  →  ( 𝑘  ∈  ( 𝐺  supp  𝑌 )  ↔  ( 𝑘  ∈  𝐵  ∧  ( 𝐺 ‘ 𝑘 )  ≠  𝑌 ) ) ) | 
						
							| 12 | 10 3 4 11 | syl3anc | ⊢ ( 𝜑  →  ( 𝑘  ∈  ( 𝐺  supp  𝑌 )  ↔  ( 𝑘  ∈  𝐵  ∧  ( 𝐺 ‘ 𝑘 )  ≠  𝑌 ) ) ) | 
						
							| 13 | 12 | notbid | ⊢ ( 𝜑  →  ( ¬  𝑘  ∈  ( 𝐺  supp  𝑌 )  ↔  ¬  ( 𝑘  ∈  𝐵  ∧  ( 𝐺 ‘ 𝑘 )  ≠  𝑌 ) ) ) | 
						
							| 14 | 13 | anbi2d | ⊢ ( 𝜑  →  ( ( 𝑘  ∈  𝐵  ∧  ¬  𝑘  ∈  ( 𝐺  supp  𝑌 ) )  ↔  ( 𝑘  ∈  𝐵  ∧  ¬  ( 𝑘  ∈  𝐵  ∧  ( 𝐺 ‘ 𝑘 )  ≠  𝑌 ) ) ) ) | 
						
							| 15 |  | annotanannot | ⊢ ( ( 𝑘  ∈  𝐵  ∧  ¬  ( 𝑘  ∈  𝐵  ∧  ( 𝐺 ‘ 𝑘 )  ≠  𝑌 ) )  ↔  ( 𝑘  ∈  𝐵  ∧  ¬  ( 𝐺 ‘ 𝑘 )  ≠  𝑌 ) ) | 
						
							| 16 | 14 15 | bitrdi | ⊢ ( 𝜑  →  ( ( 𝑘  ∈  𝐵  ∧  ¬  𝑘  ∈  ( 𝐺  supp  𝑌 ) )  ↔  ( 𝑘  ∈  𝐵  ∧  ¬  ( 𝐺 ‘ 𝑘 )  ≠  𝑌 ) ) ) | 
						
							| 17 | 9 16 | bitrid | ⊢ ( 𝜑  →  ( 𝑘  ∈  ( 𝐵  ∖  ( 𝐺  supp  𝑌 ) )  ↔  ( 𝑘  ∈  𝐵  ∧  ¬  ( 𝐺 ‘ 𝑘 )  ≠  𝑌 ) ) ) | 
						
							| 18 |  | nne | ⊢ ( ¬  ( 𝐺 ‘ 𝑘 )  ≠  𝑌  ↔  ( 𝐺 ‘ 𝑘 )  =  𝑌 ) | 
						
							| 19 | 18 | anbi2i | ⊢ ( ( 𝑘  ∈  𝐵  ∧  ¬  ( 𝐺 ‘ 𝑘 )  ≠  𝑌 )  ↔  ( 𝑘  ∈  𝐵  ∧  ( 𝐺 ‘ 𝑘 )  =  𝑌 ) ) | 
						
							| 20 | 2 | adantr | ⊢ ( ( 𝜑  ∧  ( 𝑘  ∈  𝐵  ∧  ( 𝐺 ‘ 𝑘 )  =  𝑌 ) )  →  𝐺 : 𝐵 ⟶ 𝐴 ) | 
						
							| 21 |  | simprl | ⊢ ( ( 𝜑  ∧  ( 𝑘  ∈  𝐵  ∧  ( 𝐺 ‘ 𝑘 )  =  𝑌 ) )  →  𝑘  ∈  𝐵 ) | 
						
							| 22 | 20 21 | fvco3d | ⊢ ( ( 𝜑  ∧  ( 𝑘  ∈  𝐵  ∧  ( 𝐺 ‘ 𝑘 )  =  𝑌 ) )  →  ( ( 𝐹  ∘  𝐺 ) ‘ 𝑘 )  =  ( 𝐹 ‘ ( 𝐺 ‘ 𝑘 ) ) ) | 
						
							| 23 |  | simprr | ⊢ ( ( 𝜑  ∧  ( 𝑘  ∈  𝐵  ∧  ( 𝐺 ‘ 𝑘 )  =  𝑌 ) )  →  ( 𝐺 ‘ 𝑘 )  =  𝑌 ) | 
						
							| 24 | 23 | fveq2d | ⊢ ( ( 𝜑  ∧  ( 𝑘  ∈  𝐵  ∧  ( 𝐺 ‘ 𝑘 )  =  𝑌 ) )  →  ( 𝐹 ‘ ( 𝐺 ‘ 𝑘 ) )  =  ( 𝐹 ‘ 𝑌 ) ) | 
						
							| 25 | 5 | adantr | ⊢ ( ( 𝜑  ∧  ( 𝑘  ∈  𝐵  ∧  ( 𝐺 ‘ 𝑘 )  =  𝑌 ) )  →  ( 𝐹 ‘ 𝑌 )  =  𝑍 ) | 
						
							| 26 | 22 24 25 | 3eqtrd | ⊢ ( ( 𝜑  ∧  ( 𝑘  ∈  𝐵  ∧  ( 𝐺 ‘ 𝑘 )  =  𝑌 ) )  →  ( ( 𝐹  ∘  𝐺 ) ‘ 𝑘 )  =  𝑍 ) | 
						
							| 27 | 26 | ex | ⊢ ( 𝜑  →  ( ( 𝑘  ∈  𝐵  ∧  ( 𝐺 ‘ 𝑘 )  =  𝑌 )  →  ( ( 𝐹  ∘  𝐺 ) ‘ 𝑘 )  =  𝑍 ) ) | 
						
							| 28 | 19 27 | biimtrid | ⊢ ( 𝜑  →  ( ( 𝑘  ∈  𝐵  ∧  ¬  ( 𝐺 ‘ 𝑘 )  ≠  𝑌 )  →  ( ( 𝐹  ∘  𝐺 ) ‘ 𝑘 )  =  𝑍 ) ) | 
						
							| 29 | 17 28 | sylbid | ⊢ ( 𝜑  →  ( 𝑘  ∈  ( 𝐵  ∖  ( 𝐺  supp  𝑌 ) )  →  ( ( 𝐹  ∘  𝐺 ) ‘ 𝑘 )  =  𝑍 ) ) | 
						
							| 30 | 29 | imp | ⊢ ( ( 𝜑  ∧  𝑘  ∈  ( 𝐵  ∖  ( 𝐺  supp  𝑌 ) ) )  →  ( ( 𝐹  ∘  𝐺 ) ‘ 𝑘 )  =  𝑍 ) | 
						
							| 31 | 8 30 | suppss | ⊢ ( 𝜑  →  ( ( 𝐹  ∘  𝐺 )  supp  𝑍 )  ⊆  ( 𝐺  supp  𝑌 ) ) |