| Step |
Hyp |
Ref |
Expression |
| 1 |
|
simpr1 |
⊢ ( ( ( 𝐹 Fn 𝐴 ∧ 𝐺 Fn 𝐵 ) ∧ ( 𝐴 ⊆ 𝐵 ∧ 𝐵 ∈ 𝑉 ∧ 𝑍 ∈ 𝑊 ) ) → 𝐴 ⊆ 𝐵 ) |
| 2 |
|
fndm |
⊢ ( 𝐹 Fn 𝐴 → dom 𝐹 = 𝐴 ) |
| 3 |
2
|
ad2antrr |
⊢ ( ( ( 𝐹 Fn 𝐴 ∧ 𝐺 Fn 𝐵 ) ∧ ( 𝐴 ⊆ 𝐵 ∧ 𝐵 ∈ 𝑉 ∧ 𝑍 ∈ 𝑊 ) ) → dom 𝐹 = 𝐴 ) |
| 4 |
|
fndm |
⊢ ( 𝐺 Fn 𝐵 → dom 𝐺 = 𝐵 ) |
| 5 |
4
|
ad2antlr |
⊢ ( ( ( 𝐹 Fn 𝐴 ∧ 𝐺 Fn 𝐵 ) ∧ ( 𝐴 ⊆ 𝐵 ∧ 𝐵 ∈ 𝑉 ∧ 𝑍 ∈ 𝑊 ) ) → dom 𝐺 = 𝐵 ) |
| 6 |
1 3 5
|
3sstr4d |
⊢ ( ( ( 𝐹 Fn 𝐴 ∧ 𝐺 Fn 𝐵 ) ∧ ( 𝐴 ⊆ 𝐵 ∧ 𝐵 ∈ 𝑉 ∧ 𝑍 ∈ 𝑊 ) ) → dom 𝐹 ⊆ dom 𝐺 ) |
| 7 |
6
|
adantr |
⊢ ( ( ( ( 𝐹 Fn 𝐴 ∧ 𝐺 Fn 𝐵 ) ∧ ( 𝐴 ⊆ 𝐵 ∧ 𝐵 ∈ 𝑉 ∧ 𝑍 ∈ 𝑊 ) ) ∧ ∀ 𝑥 ∈ 𝐴 ( ( 𝐺 ‘ 𝑥 ) = 𝑍 → ( 𝐹 ‘ 𝑥 ) = 𝑍 ) ) → dom 𝐹 ⊆ dom 𝐺 ) |
| 8 |
2
|
eleq2d |
⊢ ( 𝐹 Fn 𝐴 → ( 𝑦 ∈ dom 𝐹 ↔ 𝑦 ∈ 𝐴 ) ) |
| 9 |
8
|
ad2antrr |
⊢ ( ( ( 𝐹 Fn 𝐴 ∧ 𝐺 Fn 𝐵 ) ∧ ( 𝐴 ⊆ 𝐵 ∧ 𝐵 ∈ 𝑉 ∧ 𝑍 ∈ 𝑊 ) ) → ( 𝑦 ∈ dom 𝐹 ↔ 𝑦 ∈ 𝐴 ) ) |
| 10 |
|
fveqeq2 |
⊢ ( 𝑥 = 𝑦 → ( ( 𝐺 ‘ 𝑥 ) = 𝑍 ↔ ( 𝐺 ‘ 𝑦 ) = 𝑍 ) ) |
| 11 |
|
fveqeq2 |
⊢ ( 𝑥 = 𝑦 → ( ( 𝐹 ‘ 𝑥 ) = 𝑍 ↔ ( 𝐹 ‘ 𝑦 ) = 𝑍 ) ) |
| 12 |
10 11
|
imbi12d |
⊢ ( 𝑥 = 𝑦 → ( ( ( 𝐺 ‘ 𝑥 ) = 𝑍 → ( 𝐹 ‘ 𝑥 ) = 𝑍 ) ↔ ( ( 𝐺 ‘ 𝑦 ) = 𝑍 → ( 𝐹 ‘ 𝑦 ) = 𝑍 ) ) ) |
| 13 |
12
|
rspcv |
⊢ ( 𝑦 ∈ 𝐴 → ( ∀ 𝑥 ∈ 𝐴 ( ( 𝐺 ‘ 𝑥 ) = 𝑍 → ( 𝐹 ‘ 𝑥 ) = 𝑍 ) → ( ( 𝐺 ‘ 𝑦 ) = 𝑍 → ( 𝐹 ‘ 𝑦 ) = 𝑍 ) ) ) |
| 14 |
9 13
|
biimtrdi |
⊢ ( ( ( 𝐹 Fn 𝐴 ∧ 𝐺 Fn 𝐵 ) ∧ ( 𝐴 ⊆ 𝐵 ∧ 𝐵 ∈ 𝑉 ∧ 𝑍 ∈ 𝑊 ) ) → ( 𝑦 ∈ dom 𝐹 → ( ∀ 𝑥 ∈ 𝐴 ( ( 𝐺 ‘ 𝑥 ) = 𝑍 → ( 𝐹 ‘ 𝑥 ) = 𝑍 ) → ( ( 𝐺 ‘ 𝑦 ) = 𝑍 → ( 𝐹 ‘ 𝑦 ) = 𝑍 ) ) ) ) |
| 15 |
14
|
com23 |
⊢ ( ( ( 𝐹 Fn 𝐴 ∧ 𝐺 Fn 𝐵 ) ∧ ( 𝐴 ⊆ 𝐵 ∧ 𝐵 ∈ 𝑉 ∧ 𝑍 ∈ 𝑊 ) ) → ( ∀ 𝑥 ∈ 𝐴 ( ( 𝐺 ‘ 𝑥 ) = 𝑍 → ( 𝐹 ‘ 𝑥 ) = 𝑍 ) → ( 𝑦 ∈ dom 𝐹 → ( ( 𝐺 ‘ 𝑦 ) = 𝑍 → ( 𝐹 ‘ 𝑦 ) = 𝑍 ) ) ) ) |
| 16 |
15
|
imp31 |
⊢ ( ( ( ( ( 𝐹 Fn 𝐴 ∧ 𝐺 Fn 𝐵 ) ∧ ( 𝐴 ⊆ 𝐵 ∧ 𝐵 ∈ 𝑉 ∧ 𝑍 ∈ 𝑊 ) ) ∧ ∀ 𝑥 ∈ 𝐴 ( ( 𝐺 ‘ 𝑥 ) = 𝑍 → ( 𝐹 ‘ 𝑥 ) = 𝑍 ) ) ∧ 𝑦 ∈ dom 𝐹 ) → ( ( 𝐺 ‘ 𝑦 ) = 𝑍 → ( 𝐹 ‘ 𝑦 ) = 𝑍 ) ) |
| 17 |
16
|
necon3d |
⊢ ( ( ( ( ( 𝐹 Fn 𝐴 ∧ 𝐺 Fn 𝐵 ) ∧ ( 𝐴 ⊆ 𝐵 ∧ 𝐵 ∈ 𝑉 ∧ 𝑍 ∈ 𝑊 ) ) ∧ ∀ 𝑥 ∈ 𝐴 ( ( 𝐺 ‘ 𝑥 ) = 𝑍 → ( 𝐹 ‘ 𝑥 ) = 𝑍 ) ) ∧ 𝑦 ∈ dom 𝐹 ) → ( ( 𝐹 ‘ 𝑦 ) ≠ 𝑍 → ( 𝐺 ‘ 𝑦 ) ≠ 𝑍 ) ) |
| 18 |
17
|
ex |
⊢ ( ( ( ( 𝐹 Fn 𝐴 ∧ 𝐺 Fn 𝐵 ) ∧ ( 𝐴 ⊆ 𝐵 ∧ 𝐵 ∈ 𝑉 ∧ 𝑍 ∈ 𝑊 ) ) ∧ ∀ 𝑥 ∈ 𝐴 ( ( 𝐺 ‘ 𝑥 ) = 𝑍 → ( 𝐹 ‘ 𝑥 ) = 𝑍 ) ) → ( 𝑦 ∈ dom 𝐹 → ( ( 𝐹 ‘ 𝑦 ) ≠ 𝑍 → ( 𝐺 ‘ 𝑦 ) ≠ 𝑍 ) ) ) |
| 19 |
18
|
com23 |
⊢ ( ( ( ( 𝐹 Fn 𝐴 ∧ 𝐺 Fn 𝐵 ) ∧ ( 𝐴 ⊆ 𝐵 ∧ 𝐵 ∈ 𝑉 ∧ 𝑍 ∈ 𝑊 ) ) ∧ ∀ 𝑥 ∈ 𝐴 ( ( 𝐺 ‘ 𝑥 ) = 𝑍 → ( 𝐹 ‘ 𝑥 ) = 𝑍 ) ) → ( ( 𝐹 ‘ 𝑦 ) ≠ 𝑍 → ( 𝑦 ∈ dom 𝐹 → ( 𝐺 ‘ 𝑦 ) ≠ 𝑍 ) ) ) |
| 20 |
19
|
3imp |
⊢ ( ( ( ( ( 𝐹 Fn 𝐴 ∧ 𝐺 Fn 𝐵 ) ∧ ( 𝐴 ⊆ 𝐵 ∧ 𝐵 ∈ 𝑉 ∧ 𝑍 ∈ 𝑊 ) ) ∧ ∀ 𝑥 ∈ 𝐴 ( ( 𝐺 ‘ 𝑥 ) = 𝑍 → ( 𝐹 ‘ 𝑥 ) = 𝑍 ) ) ∧ ( 𝐹 ‘ 𝑦 ) ≠ 𝑍 ∧ 𝑦 ∈ dom 𝐹 ) → ( 𝐺 ‘ 𝑦 ) ≠ 𝑍 ) |
| 21 |
7 20
|
rabssrabd |
⊢ ( ( ( ( 𝐹 Fn 𝐴 ∧ 𝐺 Fn 𝐵 ) ∧ ( 𝐴 ⊆ 𝐵 ∧ 𝐵 ∈ 𝑉 ∧ 𝑍 ∈ 𝑊 ) ) ∧ ∀ 𝑥 ∈ 𝐴 ( ( 𝐺 ‘ 𝑥 ) = 𝑍 → ( 𝐹 ‘ 𝑥 ) = 𝑍 ) ) → { 𝑦 ∈ dom 𝐹 ∣ ( 𝐹 ‘ 𝑦 ) ≠ 𝑍 } ⊆ { 𝑦 ∈ dom 𝐺 ∣ ( 𝐺 ‘ 𝑦 ) ≠ 𝑍 } ) |
| 22 |
|
fnfun |
⊢ ( 𝐹 Fn 𝐴 → Fun 𝐹 ) |
| 23 |
22
|
ad2antrr |
⊢ ( ( ( 𝐹 Fn 𝐴 ∧ 𝐺 Fn 𝐵 ) ∧ ( 𝐴 ⊆ 𝐵 ∧ 𝐵 ∈ 𝑉 ∧ 𝑍 ∈ 𝑊 ) ) → Fun 𝐹 ) |
| 24 |
|
simpl |
⊢ ( ( 𝐹 Fn 𝐴 ∧ 𝐺 Fn 𝐵 ) → 𝐹 Fn 𝐴 ) |
| 25 |
|
ssexg |
⊢ ( ( 𝐴 ⊆ 𝐵 ∧ 𝐵 ∈ 𝑉 ) → 𝐴 ∈ V ) |
| 26 |
25
|
3adant3 |
⊢ ( ( 𝐴 ⊆ 𝐵 ∧ 𝐵 ∈ 𝑉 ∧ 𝑍 ∈ 𝑊 ) → 𝐴 ∈ V ) |
| 27 |
|
fnex |
⊢ ( ( 𝐹 Fn 𝐴 ∧ 𝐴 ∈ V ) → 𝐹 ∈ V ) |
| 28 |
24 26 27
|
syl2an |
⊢ ( ( ( 𝐹 Fn 𝐴 ∧ 𝐺 Fn 𝐵 ) ∧ ( 𝐴 ⊆ 𝐵 ∧ 𝐵 ∈ 𝑉 ∧ 𝑍 ∈ 𝑊 ) ) → 𝐹 ∈ V ) |
| 29 |
|
simpr3 |
⊢ ( ( ( 𝐹 Fn 𝐴 ∧ 𝐺 Fn 𝐵 ) ∧ ( 𝐴 ⊆ 𝐵 ∧ 𝐵 ∈ 𝑉 ∧ 𝑍 ∈ 𝑊 ) ) → 𝑍 ∈ 𝑊 ) |
| 30 |
|
suppval1 |
⊢ ( ( Fun 𝐹 ∧ 𝐹 ∈ V ∧ 𝑍 ∈ 𝑊 ) → ( 𝐹 supp 𝑍 ) = { 𝑦 ∈ dom 𝐹 ∣ ( 𝐹 ‘ 𝑦 ) ≠ 𝑍 } ) |
| 31 |
23 28 29 30
|
syl3anc |
⊢ ( ( ( 𝐹 Fn 𝐴 ∧ 𝐺 Fn 𝐵 ) ∧ ( 𝐴 ⊆ 𝐵 ∧ 𝐵 ∈ 𝑉 ∧ 𝑍 ∈ 𝑊 ) ) → ( 𝐹 supp 𝑍 ) = { 𝑦 ∈ dom 𝐹 ∣ ( 𝐹 ‘ 𝑦 ) ≠ 𝑍 } ) |
| 32 |
|
fnfun |
⊢ ( 𝐺 Fn 𝐵 → Fun 𝐺 ) |
| 33 |
32
|
ad2antlr |
⊢ ( ( ( 𝐹 Fn 𝐴 ∧ 𝐺 Fn 𝐵 ) ∧ ( 𝐴 ⊆ 𝐵 ∧ 𝐵 ∈ 𝑉 ∧ 𝑍 ∈ 𝑊 ) ) → Fun 𝐺 ) |
| 34 |
|
simpr |
⊢ ( ( 𝐹 Fn 𝐴 ∧ 𝐺 Fn 𝐵 ) → 𝐺 Fn 𝐵 ) |
| 35 |
|
simp2 |
⊢ ( ( 𝐴 ⊆ 𝐵 ∧ 𝐵 ∈ 𝑉 ∧ 𝑍 ∈ 𝑊 ) → 𝐵 ∈ 𝑉 ) |
| 36 |
|
fnex |
⊢ ( ( 𝐺 Fn 𝐵 ∧ 𝐵 ∈ 𝑉 ) → 𝐺 ∈ V ) |
| 37 |
34 35 36
|
syl2an |
⊢ ( ( ( 𝐹 Fn 𝐴 ∧ 𝐺 Fn 𝐵 ) ∧ ( 𝐴 ⊆ 𝐵 ∧ 𝐵 ∈ 𝑉 ∧ 𝑍 ∈ 𝑊 ) ) → 𝐺 ∈ V ) |
| 38 |
|
suppval1 |
⊢ ( ( Fun 𝐺 ∧ 𝐺 ∈ V ∧ 𝑍 ∈ 𝑊 ) → ( 𝐺 supp 𝑍 ) = { 𝑦 ∈ dom 𝐺 ∣ ( 𝐺 ‘ 𝑦 ) ≠ 𝑍 } ) |
| 39 |
33 37 29 38
|
syl3anc |
⊢ ( ( ( 𝐹 Fn 𝐴 ∧ 𝐺 Fn 𝐵 ) ∧ ( 𝐴 ⊆ 𝐵 ∧ 𝐵 ∈ 𝑉 ∧ 𝑍 ∈ 𝑊 ) ) → ( 𝐺 supp 𝑍 ) = { 𝑦 ∈ dom 𝐺 ∣ ( 𝐺 ‘ 𝑦 ) ≠ 𝑍 } ) |
| 40 |
31 39
|
sseq12d |
⊢ ( ( ( 𝐹 Fn 𝐴 ∧ 𝐺 Fn 𝐵 ) ∧ ( 𝐴 ⊆ 𝐵 ∧ 𝐵 ∈ 𝑉 ∧ 𝑍 ∈ 𝑊 ) ) → ( ( 𝐹 supp 𝑍 ) ⊆ ( 𝐺 supp 𝑍 ) ↔ { 𝑦 ∈ dom 𝐹 ∣ ( 𝐹 ‘ 𝑦 ) ≠ 𝑍 } ⊆ { 𝑦 ∈ dom 𝐺 ∣ ( 𝐺 ‘ 𝑦 ) ≠ 𝑍 } ) ) |
| 41 |
40
|
adantr |
⊢ ( ( ( ( 𝐹 Fn 𝐴 ∧ 𝐺 Fn 𝐵 ) ∧ ( 𝐴 ⊆ 𝐵 ∧ 𝐵 ∈ 𝑉 ∧ 𝑍 ∈ 𝑊 ) ) ∧ ∀ 𝑥 ∈ 𝐴 ( ( 𝐺 ‘ 𝑥 ) = 𝑍 → ( 𝐹 ‘ 𝑥 ) = 𝑍 ) ) → ( ( 𝐹 supp 𝑍 ) ⊆ ( 𝐺 supp 𝑍 ) ↔ { 𝑦 ∈ dom 𝐹 ∣ ( 𝐹 ‘ 𝑦 ) ≠ 𝑍 } ⊆ { 𝑦 ∈ dom 𝐺 ∣ ( 𝐺 ‘ 𝑦 ) ≠ 𝑍 } ) ) |
| 42 |
21 41
|
mpbird |
⊢ ( ( ( ( 𝐹 Fn 𝐴 ∧ 𝐺 Fn 𝐵 ) ∧ ( 𝐴 ⊆ 𝐵 ∧ 𝐵 ∈ 𝑉 ∧ 𝑍 ∈ 𝑊 ) ) ∧ ∀ 𝑥 ∈ 𝐴 ( ( 𝐺 ‘ 𝑥 ) = 𝑍 → ( 𝐹 ‘ 𝑥 ) = 𝑍 ) ) → ( 𝐹 supp 𝑍 ) ⊆ ( 𝐺 supp 𝑍 ) ) |
| 43 |
42
|
ex |
⊢ ( ( ( 𝐹 Fn 𝐴 ∧ 𝐺 Fn 𝐵 ) ∧ ( 𝐴 ⊆ 𝐵 ∧ 𝐵 ∈ 𝑉 ∧ 𝑍 ∈ 𝑊 ) ) → ( ∀ 𝑥 ∈ 𝐴 ( ( 𝐺 ‘ 𝑥 ) = 𝑍 → ( 𝐹 ‘ 𝑥 ) = 𝑍 ) → ( 𝐹 supp 𝑍 ) ⊆ ( 𝐺 supp 𝑍 ) ) ) |