| Step |
Hyp |
Ref |
Expression |
| 1 |
|
suppofssd.1 |
⊢ ( 𝜑 → 𝐴 ∈ 𝑉 ) |
| 2 |
|
suppofssd.2 |
⊢ ( 𝜑 → 𝑍 ∈ 𝐵 ) |
| 3 |
|
suppofssd.3 |
⊢ ( 𝜑 → 𝐹 : 𝐴 ⟶ 𝐵 ) |
| 4 |
|
suppofssd.4 |
⊢ ( 𝜑 → 𝐺 : 𝐴 ⟶ 𝐵 ) |
| 5 |
|
suppofssd.5 |
⊢ ( 𝜑 → ( 𝑍 𝑋 𝑍 ) = 𝑍 ) |
| 6 |
|
ovexd |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) → ( 𝑥 𝑋 𝑦 ) ∈ V ) |
| 7 |
|
inidm |
⊢ ( 𝐴 ∩ 𝐴 ) = 𝐴 |
| 8 |
6 3 4 1 1 7
|
off |
⊢ ( 𝜑 → ( 𝐹 ∘f 𝑋 𝐺 ) : 𝐴 ⟶ V ) |
| 9 |
|
eldif |
⊢ ( 𝑘 ∈ ( 𝐴 ∖ ( ( 𝐹 supp 𝑍 ) ∪ ( 𝐺 supp 𝑍 ) ) ) ↔ ( 𝑘 ∈ 𝐴 ∧ ¬ 𝑘 ∈ ( ( 𝐹 supp 𝑍 ) ∪ ( 𝐺 supp 𝑍 ) ) ) ) |
| 10 |
|
ioran |
⊢ ( ¬ ( 𝑘 ∈ ( 𝐹 supp 𝑍 ) ∨ 𝑘 ∈ ( 𝐺 supp 𝑍 ) ) ↔ ( ¬ 𝑘 ∈ ( 𝐹 supp 𝑍 ) ∧ ¬ 𝑘 ∈ ( 𝐺 supp 𝑍 ) ) ) |
| 11 |
|
elun |
⊢ ( 𝑘 ∈ ( ( 𝐹 supp 𝑍 ) ∪ ( 𝐺 supp 𝑍 ) ) ↔ ( 𝑘 ∈ ( 𝐹 supp 𝑍 ) ∨ 𝑘 ∈ ( 𝐺 supp 𝑍 ) ) ) |
| 12 |
10 11
|
xchnxbir |
⊢ ( ¬ 𝑘 ∈ ( ( 𝐹 supp 𝑍 ) ∪ ( 𝐺 supp 𝑍 ) ) ↔ ( ¬ 𝑘 ∈ ( 𝐹 supp 𝑍 ) ∧ ¬ 𝑘 ∈ ( 𝐺 supp 𝑍 ) ) ) |
| 13 |
12
|
anbi2i |
⊢ ( ( 𝑘 ∈ 𝐴 ∧ ¬ 𝑘 ∈ ( ( 𝐹 supp 𝑍 ) ∪ ( 𝐺 supp 𝑍 ) ) ) ↔ ( 𝑘 ∈ 𝐴 ∧ ( ¬ 𝑘 ∈ ( 𝐹 supp 𝑍 ) ∧ ¬ 𝑘 ∈ ( 𝐺 supp 𝑍 ) ) ) ) |
| 14 |
9 13
|
bitri |
⊢ ( 𝑘 ∈ ( 𝐴 ∖ ( ( 𝐹 supp 𝑍 ) ∪ ( 𝐺 supp 𝑍 ) ) ) ↔ ( 𝑘 ∈ 𝐴 ∧ ( ¬ 𝑘 ∈ ( 𝐹 supp 𝑍 ) ∧ ¬ 𝑘 ∈ ( 𝐺 supp 𝑍 ) ) ) ) |
| 15 |
3
|
ffnd |
⊢ ( 𝜑 → 𝐹 Fn 𝐴 ) |
| 16 |
|
elsuppfn |
⊢ ( ( 𝐹 Fn 𝐴 ∧ 𝐴 ∈ 𝑉 ∧ 𝑍 ∈ 𝐵 ) → ( 𝑘 ∈ ( 𝐹 supp 𝑍 ) ↔ ( 𝑘 ∈ 𝐴 ∧ ( 𝐹 ‘ 𝑘 ) ≠ 𝑍 ) ) ) |
| 17 |
15 1 2 16
|
syl3anc |
⊢ ( 𝜑 → ( 𝑘 ∈ ( 𝐹 supp 𝑍 ) ↔ ( 𝑘 ∈ 𝐴 ∧ ( 𝐹 ‘ 𝑘 ) ≠ 𝑍 ) ) ) |
| 18 |
17
|
notbid |
⊢ ( 𝜑 → ( ¬ 𝑘 ∈ ( 𝐹 supp 𝑍 ) ↔ ¬ ( 𝑘 ∈ 𝐴 ∧ ( 𝐹 ‘ 𝑘 ) ≠ 𝑍 ) ) ) |
| 19 |
18
|
biimpd |
⊢ ( 𝜑 → ( ¬ 𝑘 ∈ ( 𝐹 supp 𝑍 ) → ¬ ( 𝑘 ∈ 𝐴 ∧ ( 𝐹 ‘ 𝑘 ) ≠ 𝑍 ) ) ) |
| 20 |
4
|
ffnd |
⊢ ( 𝜑 → 𝐺 Fn 𝐴 ) |
| 21 |
|
elsuppfn |
⊢ ( ( 𝐺 Fn 𝐴 ∧ 𝐴 ∈ 𝑉 ∧ 𝑍 ∈ 𝐵 ) → ( 𝑘 ∈ ( 𝐺 supp 𝑍 ) ↔ ( 𝑘 ∈ 𝐴 ∧ ( 𝐺 ‘ 𝑘 ) ≠ 𝑍 ) ) ) |
| 22 |
20 1 2 21
|
syl3anc |
⊢ ( 𝜑 → ( 𝑘 ∈ ( 𝐺 supp 𝑍 ) ↔ ( 𝑘 ∈ 𝐴 ∧ ( 𝐺 ‘ 𝑘 ) ≠ 𝑍 ) ) ) |
| 23 |
22
|
notbid |
⊢ ( 𝜑 → ( ¬ 𝑘 ∈ ( 𝐺 supp 𝑍 ) ↔ ¬ ( 𝑘 ∈ 𝐴 ∧ ( 𝐺 ‘ 𝑘 ) ≠ 𝑍 ) ) ) |
| 24 |
23
|
biimpd |
⊢ ( 𝜑 → ( ¬ 𝑘 ∈ ( 𝐺 supp 𝑍 ) → ¬ ( 𝑘 ∈ 𝐴 ∧ ( 𝐺 ‘ 𝑘 ) ≠ 𝑍 ) ) ) |
| 25 |
19 24
|
anim12d |
⊢ ( 𝜑 → ( ( ¬ 𝑘 ∈ ( 𝐹 supp 𝑍 ) ∧ ¬ 𝑘 ∈ ( 𝐺 supp 𝑍 ) ) → ( ¬ ( 𝑘 ∈ 𝐴 ∧ ( 𝐹 ‘ 𝑘 ) ≠ 𝑍 ) ∧ ¬ ( 𝑘 ∈ 𝐴 ∧ ( 𝐺 ‘ 𝑘 ) ≠ 𝑍 ) ) ) ) |
| 26 |
25
|
anim2d |
⊢ ( 𝜑 → ( ( 𝑘 ∈ 𝐴 ∧ ( ¬ 𝑘 ∈ ( 𝐹 supp 𝑍 ) ∧ ¬ 𝑘 ∈ ( 𝐺 supp 𝑍 ) ) ) → ( 𝑘 ∈ 𝐴 ∧ ( ¬ ( 𝑘 ∈ 𝐴 ∧ ( 𝐹 ‘ 𝑘 ) ≠ 𝑍 ) ∧ ¬ ( 𝑘 ∈ 𝐴 ∧ ( 𝐺 ‘ 𝑘 ) ≠ 𝑍 ) ) ) ) ) |
| 27 |
26
|
imp |
⊢ ( ( 𝜑 ∧ ( 𝑘 ∈ 𝐴 ∧ ( ¬ 𝑘 ∈ ( 𝐹 supp 𝑍 ) ∧ ¬ 𝑘 ∈ ( 𝐺 supp 𝑍 ) ) ) ) → ( 𝑘 ∈ 𝐴 ∧ ( ¬ ( 𝑘 ∈ 𝐴 ∧ ( 𝐹 ‘ 𝑘 ) ≠ 𝑍 ) ∧ ¬ ( 𝑘 ∈ 𝐴 ∧ ( 𝐺 ‘ 𝑘 ) ≠ 𝑍 ) ) ) ) |
| 28 |
|
pm3.2 |
⊢ ( 𝑘 ∈ 𝐴 → ( ( 𝐹 ‘ 𝑘 ) ≠ 𝑍 → ( 𝑘 ∈ 𝐴 ∧ ( 𝐹 ‘ 𝑘 ) ≠ 𝑍 ) ) ) |
| 29 |
28
|
necon1bd |
⊢ ( 𝑘 ∈ 𝐴 → ( ¬ ( 𝑘 ∈ 𝐴 ∧ ( 𝐹 ‘ 𝑘 ) ≠ 𝑍 ) → ( 𝐹 ‘ 𝑘 ) = 𝑍 ) ) |
| 30 |
|
pm3.2 |
⊢ ( 𝑘 ∈ 𝐴 → ( ( 𝐺 ‘ 𝑘 ) ≠ 𝑍 → ( 𝑘 ∈ 𝐴 ∧ ( 𝐺 ‘ 𝑘 ) ≠ 𝑍 ) ) ) |
| 31 |
30
|
necon1bd |
⊢ ( 𝑘 ∈ 𝐴 → ( ¬ ( 𝑘 ∈ 𝐴 ∧ ( 𝐺 ‘ 𝑘 ) ≠ 𝑍 ) → ( 𝐺 ‘ 𝑘 ) = 𝑍 ) ) |
| 32 |
29 31
|
anim12d |
⊢ ( 𝑘 ∈ 𝐴 → ( ( ¬ ( 𝑘 ∈ 𝐴 ∧ ( 𝐹 ‘ 𝑘 ) ≠ 𝑍 ) ∧ ¬ ( 𝑘 ∈ 𝐴 ∧ ( 𝐺 ‘ 𝑘 ) ≠ 𝑍 ) ) → ( ( 𝐹 ‘ 𝑘 ) = 𝑍 ∧ ( 𝐺 ‘ 𝑘 ) = 𝑍 ) ) ) |
| 33 |
32
|
imdistani |
⊢ ( ( 𝑘 ∈ 𝐴 ∧ ( ¬ ( 𝑘 ∈ 𝐴 ∧ ( 𝐹 ‘ 𝑘 ) ≠ 𝑍 ) ∧ ¬ ( 𝑘 ∈ 𝐴 ∧ ( 𝐺 ‘ 𝑘 ) ≠ 𝑍 ) ) ) → ( 𝑘 ∈ 𝐴 ∧ ( ( 𝐹 ‘ 𝑘 ) = 𝑍 ∧ ( 𝐺 ‘ 𝑘 ) = 𝑍 ) ) ) |
| 34 |
15
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑘 ∈ 𝐴 ∧ ( ( 𝐹 ‘ 𝑘 ) = 𝑍 ∧ ( 𝐺 ‘ 𝑘 ) = 𝑍 ) ) ) → 𝐹 Fn 𝐴 ) |
| 35 |
20
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑘 ∈ 𝐴 ∧ ( ( 𝐹 ‘ 𝑘 ) = 𝑍 ∧ ( 𝐺 ‘ 𝑘 ) = 𝑍 ) ) ) → 𝐺 Fn 𝐴 ) |
| 36 |
1
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑘 ∈ 𝐴 ∧ ( ( 𝐹 ‘ 𝑘 ) = 𝑍 ∧ ( 𝐺 ‘ 𝑘 ) = 𝑍 ) ) ) → 𝐴 ∈ 𝑉 ) |
| 37 |
|
simprl |
⊢ ( ( 𝜑 ∧ ( 𝑘 ∈ 𝐴 ∧ ( ( 𝐹 ‘ 𝑘 ) = 𝑍 ∧ ( 𝐺 ‘ 𝑘 ) = 𝑍 ) ) ) → 𝑘 ∈ 𝐴 ) |
| 38 |
|
fnfvof |
⊢ ( ( ( 𝐹 Fn 𝐴 ∧ 𝐺 Fn 𝐴 ) ∧ ( 𝐴 ∈ 𝑉 ∧ 𝑘 ∈ 𝐴 ) ) → ( ( 𝐹 ∘f 𝑋 𝐺 ) ‘ 𝑘 ) = ( ( 𝐹 ‘ 𝑘 ) 𝑋 ( 𝐺 ‘ 𝑘 ) ) ) |
| 39 |
34 35 36 37 38
|
syl22anc |
⊢ ( ( 𝜑 ∧ ( 𝑘 ∈ 𝐴 ∧ ( ( 𝐹 ‘ 𝑘 ) = 𝑍 ∧ ( 𝐺 ‘ 𝑘 ) = 𝑍 ) ) ) → ( ( 𝐹 ∘f 𝑋 𝐺 ) ‘ 𝑘 ) = ( ( 𝐹 ‘ 𝑘 ) 𝑋 ( 𝐺 ‘ 𝑘 ) ) ) |
| 40 |
|
oveq12 |
⊢ ( ( ( 𝐹 ‘ 𝑘 ) = 𝑍 ∧ ( 𝐺 ‘ 𝑘 ) = 𝑍 ) → ( ( 𝐹 ‘ 𝑘 ) 𝑋 ( 𝐺 ‘ 𝑘 ) ) = ( 𝑍 𝑋 𝑍 ) ) |
| 41 |
40
|
ad2antll |
⊢ ( ( 𝜑 ∧ ( 𝑘 ∈ 𝐴 ∧ ( ( 𝐹 ‘ 𝑘 ) = 𝑍 ∧ ( 𝐺 ‘ 𝑘 ) = 𝑍 ) ) ) → ( ( 𝐹 ‘ 𝑘 ) 𝑋 ( 𝐺 ‘ 𝑘 ) ) = ( 𝑍 𝑋 𝑍 ) ) |
| 42 |
5
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑘 ∈ 𝐴 ∧ ( ( 𝐹 ‘ 𝑘 ) = 𝑍 ∧ ( 𝐺 ‘ 𝑘 ) = 𝑍 ) ) ) → ( 𝑍 𝑋 𝑍 ) = 𝑍 ) |
| 43 |
39 41 42
|
3eqtrd |
⊢ ( ( 𝜑 ∧ ( 𝑘 ∈ 𝐴 ∧ ( ( 𝐹 ‘ 𝑘 ) = 𝑍 ∧ ( 𝐺 ‘ 𝑘 ) = 𝑍 ) ) ) → ( ( 𝐹 ∘f 𝑋 𝐺 ) ‘ 𝑘 ) = 𝑍 ) |
| 44 |
33 43
|
sylan2 |
⊢ ( ( 𝜑 ∧ ( 𝑘 ∈ 𝐴 ∧ ( ¬ ( 𝑘 ∈ 𝐴 ∧ ( 𝐹 ‘ 𝑘 ) ≠ 𝑍 ) ∧ ¬ ( 𝑘 ∈ 𝐴 ∧ ( 𝐺 ‘ 𝑘 ) ≠ 𝑍 ) ) ) ) → ( ( 𝐹 ∘f 𝑋 𝐺 ) ‘ 𝑘 ) = 𝑍 ) |
| 45 |
27 44
|
syldan |
⊢ ( ( 𝜑 ∧ ( 𝑘 ∈ 𝐴 ∧ ( ¬ 𝑘 ∈ ( 𝐹 supp 𝑍 ) ∧ ¬ 𝑘 ∈ ( 𝐺 supp 𝑍 ) ) ) ) → ( ( 𝐹 ∘f 𝑋 𝐺 ) ‘ 𝑘 ) = 𝑍 ) |
| 46 |
14 45
|
sylan2b |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 𝐴 ∖ ( ( 𝐹 supp 𝑍 ) ∪ ( 𝐺 supp 𝑍 ) ) ) ) → ( ( 𝐹 ∘f 𝑋 𝐺 ) ‘ 𝑘 ) = 𝑍 ) |
| 47 |
8 46
|
suppss |
⊢ ( 𝜑 → ( ( 𝐹 ∘f 𝑋 𝐺 ) supp 𝑍 ) ⊆ ( ( 𝐹 supp 𝑍 ) ∪ ( 𝐺 supp 𝑍 ) ) ) |