Step |
Hyp |
Ref |
Expression |
1 |
|
suppss.f |
⊢ ( 𝜑 → 𝐹 : 𝐴 ⟶ 𝐵 ) |
2 |
|
suppss.n |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 𝐴 ∖ 𝑊 ) ) → ( 𝐹 ‘ 𝑘 ) = 𝑍 ) |
3 |
1
|
ffnd |
⊢ ( 𝜑 → 𝐹 Fn 𝐴 ) |
4 |
3
|
adantl |
⊢ ( ( ( 𝐹 ∈ V ∧ 𝑍 ∈ V ) ∧ 𝜑 ) → 𝐹 Fn 𝐴 ) |
5 |
|
simpll |
⊢ ( ( ( 𝐹 ∈ V ∧ 𝑍 ∈ V ) ∧ 𝜑 ) → 𝐹 ∈ V ) |
6 |
|
simplr |
⊢ ( ( ( 𝐹 ∈ V ∧ 𝑍 ∈ V ) ∧ 𝜑 ) → 𝑍 ∈ V ) |
7 |
|
elsuppfng |
⊢ ( ( 𝐹 Fn 𝐴 ∧ 𝐹 ∈ V ∧ 𝑍 ∈ V ) → ( 𝑘 ∈ ( 𝐹 supp 𝑍 ) ↔ ( 𝑘 ∈ 𝐴 ∧ ( 𝐹 ‘ 𝑘 ) ≠ 𝑍 ) ) ) |
8 |
4 5 6 7
|
syl3anc |
⊢ ( ( ( 𝐹 ∈ V ∧ 𝑍 ∈ V ) ∧ 𝜑 ) → ( 𝑘 ∈ ( 𝐹 supp 𝑍 ) ↔ ( 𝑘 ∈ 𝐴 ∧ ( 𝐹 ‘ 𝑘 ) ≠ 𝑍 ) ) ) |
9 |
|
eldif |
⊢ ( 𝑘 ∈ ( 𝐴 ∖ 𝑊 ) ↔ ( 𝑘 ∈ 𝐴 ∧ ¬ 𝑘 ∈ 𝑊 ) ) |
10 |
2
|
adantll |
⊢ ( ( ( ( 𝐹 ∈ V ∧ 𝑍 ∈ V ) ∧ 𝜑 ) ∧ 𝑘 ∈ ( 𝐴 ∖ 𝑊 ) ) → ( 𝐹 ‘ 𝑘 ) = 𝑍 ) |
11 |
9 10
|
sylan2br |
⊢ ( ( ( ( 𝐹 ∈ V ∧ 𝑍 ∈ V ) ∧ 𝜑 ) ∧ ( 𝑘 ∈ 𝐴 ∧ ¬ 𝑘 ∈ 𝑊 ) ) → ( 𝐹 ‘ 𝑘 ) = 𝑍 ) |
12 |
11
|
expr |
⊢ ( ( ( ( 𝐹 ∈ V ∧ 𝑍 ∈ V ) ∧ 𝜑 ) ∧ 𝑘 ∈ 𝐴 ) → ( ¬ 𝑘 ∈ 𝑊 → ( 𝐹 ‘ 𝑘 ) = 𝑍 ) ) |
13 |
12
|
necon1ad |
⊢ ( ( ( ( 𝐹 ∈ V ∧ 𝑍 ∈ V ) ∧ 𝜑 ) ∧ 𝑘 ∈ 𝐴 ) → ( ( 𝐹 ‘ 𝑘 ) ≠ 𝑍 → 𝑘 ∈ 𝑊 ) ) |
14 |
13
|
expimpd |
⊢ ( ( ( 𝐹 ∈ V ∧ 𝑍 ∈ V ) ∧ 𝜑 ) → ( ( 𝑘 ∈ 𝐴 ∧ ( 𝐹 ‘ 𝑘 ) ≠ 𝑍 ) → 𝑘 ∈ 𝑊 ) ) |
15 |
8 14
|
sylbid |
⊢ ( ( ( 𝐹 ∈ V ∧ 𝑍 ∈ V ) ∧ 𝜑 ) → ( 𝑘 ∈ ( 𝐹 supp 𝑍 ) → 𝑘 ∈ 𝑊 ) ) |
16 |
15
|
ssrdv |
⊢ ( ( ( 𝐹 ∈ V ∧ 𝑍 ∈ V ) ∧ 𝜑 ) → ( 𝐹 supp 𝑍 ) ⊆ 𝑊 ) |
17 |
16
|
ex |
⊢ ( ( 𝐹 ∈ V ∧ 𝑍 ∈ V ) → ( 𝜑 → ( 𝐹 supp 𝑍 ) ⊆ 𝑊 ) ) |
18 |
|
supp0prc |
⊢ ( ¬ ( 𝐹 ∈ V ∧ 𝑍 ∈ V ) → ( 𝐹 supp 𝑍 ) = ∅ ) |
19 |
|
0ss |
⊢ ∅ ⊆ 𝑊 |
20 |
18 19
|
eqsstrdi |
⊢ ( ¬ ( 𝐹 ∈ V ∧ 𝑍 ∈ V ) → ( 𝐹 supp 𝑍 ) ⊆ 𝑊 ) |
21 |
20
|
a1d |
⊢ ( ¬ ( 𝐹 ∈ V ∧ 𝑍 ∈ V ) → ( 𝜑 → ( 𝐹 supp 𝑍 ) ⊆ 𝑊 ) ) |
22 |
17 21
|
pm2.61i |
⊢ ( 𝜑 → ( 𝐹 supp 𝑍 ) ⊆ 𝑊 ) |