Metamath Proof Explorer


Theorem suppss

Description: Show that the support of a function is contained in a set. (Contributed by Mario Carneiro, 19-Dec-2014) (Revised by AV, 28-May-2019) (Proof shortened by SN, 5-Aug-2024)

Ref Expression
Hypotheses suppss.f ( 𝜑𝐹 : 𝐴𝐵 )
suppss.n ( ( 𝜑𝑘 ∈ ( 𝐴𝑊 ) ) → ( 𝐹𝑘 ) = 𝑍 )
Assertion suppss ( 𝜑 → ( 𝐹 supp 𝑍 ) ⊆ 𝑊 )

Proof

Step Hyp Ref Expression
1 suppss.f ( 𝜑𝐹 : 𝐴𝐵 )
2 suppss.n ( ( 𝜑𝑘 ∈ ( 𝐴𝑊 ) ) → ( 𝐹𝑘 ) = 𝑍 )
3 1 ffnd ( 𝜑𝐹 Fn 𝐴 )
4 3 adantl ( ( ( 𝐹 ∈ V ∧ 𝑍 ∈ V ) ∧ 𝜑 ) → 𝐹 Fn 𝐴 )
5 simpll ( ( ( 𝐹 ∈ V ∧ 𝑍 ∈ V ) ∧ 𝜑 ) → 𝐹 ∈ V )
6 simplr ( ( ( 𝐹 ∈ V ∧ 𝑍 ∈ V ) ∧ 𝜑 ) → 𝑍 ∈ V )
7 elsuppfng ( ( 𝐹 Fn 𝐴𝐹 ∈ V ∧ 𝑍 ∈ V ) → ( 𝑘 ∈ ( 𝐹 supp 𝑍 ) ↔ ( 𝑘𝐴 ∧ ( 𝐹𝑘 ) ≠ 𝑍 ) ) )
8 4 5 6 7 syl3anc ( ( ( 𝐹 ∈ V ∧ 𝑍 ∈ V ) ∧ 𝜑 ) → ( 𝑘 ∈ ( 𝐹 supp 𝑍 ) ↔ ( 𝑘𝐴 ∧ ( 𝐹𝑘 ) ≠ 𝑍 ) ) )
9 eldif ( 𝑘 ∈ ( 𝐴𝑊 ) ↔ ( 𝑘𝐴 ∧ ¬ 𝑘𝑊 ) )
10 2 adantll ( ( ( ( 𝐹 ∈ V ∧ 𝑍 ∈ V ) ∧ 𝜑 ) ∧ 𝑘 ∈ ( 𝐴𝑊 ) ) → ( 𝐹𝑘 ) = 𝑍 )
11 9 10 sylan2br ( ( ( ( 𝐹 ∈ V ∧ 𝑍 ∈ V ) ∧ 𝜑 ) ∧ ( 𝑘𝐴 ∧ ¬ 𝑘𝑊 ) ) → ( 𝐹𝑘 ) = 𝑍 )
12 11 expr ( ( ( ( 𝐹 ∈ V ∧ 𝑍 ∈ V ) ∧ 𝜑 ) ∧ 𝑘𝐴 ) → ( ¬ 𝑘𝑊 → ( 𝐹𝑘 ) = 𝑍 ) )
13 12 necon1ad ( ( ( ( 𝐹 ∈ V ∧ 𝑍 ∈ V ) ∧ 𝜑 ) ∧ 𝑘𝐴 ) → ( ( 𝐹𝑘 ) ≠ 𝑍𝑘𝑊 ) )
14 13 expimpd ( ( ( 𝐹 ∈ V ∧ 𝑍 ∈ V ) ∧ 𝜑 ) → ( ( 𝑘𝐴 ∧ ( 𝐹𝑘 ) ≠ 𝑍 ) → 𝑘𝑊 ) )
15 8 14 sylbid ( ( ( 𝐹 ∈ V ∧ 𝑍 ∈ V ) ∧ 𝜑 ) → ( 𝑘 ∈ ( 𝐹 supp 𝑍 ) → 𝑘𝑊 ) )
16 15 ssrdv ( ( ( 𝐹 ∈ V ∧ 𝑍 ∈ V ) ∧ 𝜑 ) → ( 𝐹 supp 𝑍 ) ⊆ 𝑊 )
17 16 ex ( ( 𝐹 ∈ V ∧ 𝑍 ∈ V ) → ( 𝜑 → ( 𝐹 supp 𝑍 ) ⊆ 𝑊 ) )
18 supp0prc ( ¬ ( 𝐹 ∈ V ∧ 𝑍 ∈ V ) → ( 𝐹 supp 𝑍 ) = ∅ )
19 0ss ∅ ⊆ 𝑊
20 18 19 eqsstrdi ( ¬ ( 𝐹 ∈ V ∧ 𝑍 ∈ V ) → ( 𝐹 supp 𝑍 ) ⊆ 𝑊 )
21 20 a1d ( ¬ ( 𝐹 ∈ V ∧ 𝑍 ∈ V ) → ( 𝜑 → ( 𝐹 supp 𝑍 ) ⊆ 𝑊 ) )
22 17 21 pm2.61i ( 𝜑 → ( 𝐹 supp 𝑍 ) ⊆ 𝑊 )