Step |
Hyp |
Ref |
Expression |
1 |
|
suppss2.n |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 𝐴 ∖ 𝑊 ) ) → 𝐵 = 𝑍 ) |
2 |
|
suppss2.a |
⊢ ( 𝜑 → 𝐴 ∈ 𝑉 ) |
3 |
|
eqid |
⊢ ( 𝑘 ∈ 𝐴 ↦ 𝐵 ) = ( 𝑘 ∈ 𝐴 ↦ 𝐵 ) |
4 |
2
|
adantl |
⊢ ( ( 𝑍 ∈ V ∧ 𝜑 ) → 𝐴 ∈ 𝑉 ) |
5 |
|
simpl |
⊢ ( ( 𝑍 ∈ V ∧ 𝜑 ) → 𝑍 ∈ V ) |
6 |
3 4 5
|
mptsuppdifd |
⊢ ( ( 𝑍 ∈ V ∧ 𝜑 ) → ( ( 𝑘 ∈ 𝐴 ↦ 𝐵 ) supp 𝑍 ) = { 𝑘 ∈ 𝐴 ∣ 𝐵 ∈ ( V ∖ { 𝑍 } ) } ) |
7 |
|
eldifsni |
⊢ ( 𝐵 ∈ ( V ∖ { 𝑍 } ) → 𝐵 ≠ 𝑍 ) |
8 |
|
eldif |
⊢ ( 𝑘 ∈ ( 𝐴 ∖ 𝑊 ) ↔ ( 𝑘 ∈ 𝐴 ∧ ¬ 𝑘 ∈ 𝑊 ) ) |
9 |
1
|
adantll |
⊢ ( ( ( 𝑍 ∈ V ∧ 𝜑 ) ∧ 𝑘 ∈ ( 𝐴 ∖ 𝑊 ) ) → 𝐵 = 𝑍 ) |
10 |
8 9
|
sylan2br |
⊢ ( ( ( 𝑍 ∈ V ∧ 𝜑 ) ∧ ( 𝑘 ∈ 𝐴 ∧ ¬ 𝑘 ∈ 𝑊 ) ) → 𝐵 = 𝑍 ) |
11 |
10
|
expr |
⊢ ( ( ( 𝑍 ∈ V ∧ 𝜑 ) ∧ 𝑘 ∈ 𝐴 ) → ( ¬ 𝑘 ∈ 𝑊 → 𝐵 = 𝑍 ) ) |
12 |
11
|
necon1ad |
⊢ ( ( ( 𝑍 ∈ V ∧ 𝜑 ) ∧ 𝑘 ∈ 𝐴 ) → ( 𝐵 ≠ 𝑍 → 𝑘 ∈ 𝑊 ) ) |
13 |
7 12
|
syl5 |
⊢ ( ( ( 𝑍 ∈ V ∧ 𝜑 ) ∧ 𝑘 ∈ 𝐴 ) → ( 𝐵 ∈ ( V ∖ { 𝑍 } ) → 𝑘 ∈ 𝑊 ) ) |
14 |
13
|
3impia |
⊢ ( ( ( 𝑍 ∈ V ∧ 𝜑 ) ∧ 𝑘 ∈ 𝐴 ∧ 𝐵 ∈ ( V ∖ { 𝑍 } ) ) → 𝑘 ∈ 𝑊 ) |
15 |
14
|
rabssdv |
⊢ ( ( 𝑍 ∈ V ∧ 𝜑 ) → { 𝑘 ∈ 𝐴 ∣ 𝐵 ∈ ( V ∖ { 𝑍 } ) } ⊆ 𝑊 ) |
16 |
6 15
|
eqsstrd |
⊢ ( ( 𝑍 ∈ V ∧ 𝜑 ) → ( ( 𝑘 ∈ 𝐴 ↦ 𝐵 ) supp 𝑍 ) ⊆ 𝑊 ) |
17 |
16
|
ex |
⊢ ( 𝑍 ∈ V → ( 𝜑 → ( ( 𝑘 ∈ 𝐴 ↦ 𝐵 ) supp 𝑍 ) ⊆ 𝑊 ) ) |
18 |
|
id |
⊢ ( ¬ 𝑍 ∈ V → ¬ 𝑍 ∈ V ) |
19 |
18
|
intnand |
⊢ ( ¬ 𝑍 ∈ V → ¬ ( ( 𝑘 ∈ 𝐴 ↦ 𝐵 ) ∈ V ∧ 𝑍 ∈ V ) ) |
20 |
|
supp0prc |
⊢ ( ¬ ( ( 𝑘 ∈ 𝐴 ↦ 𝐵 ) ∈ V ∧ 𝑍 ∈ V ) → ( ( 𝑘 ∈ 𝐴 ↦ 𝐵 ) supp 𝑍 ) = ∅ ) |
21 |
19 20
|
syl |
⊢ ( ¬ 𝑍 ∈ V → ( ( 𝑘 ∈ 𝐴 ↦ 𝐵 ) supp 𝑍 ) = ∅ ) |
22 |
|
0ss |
⊢ ∅ ⊆ 𝑊 |
23 |
21 22
|
eqsstrdi |
⊢ ( ¬ 𝑍 ∈ V → ( ( 𝑘 ∈ 𝐴 ↦ 𝐵 ) supp 𝑍 ) ⊆ 𝑊 ) |
24 |
23
|
a1d |
⊢ ( ¬ 𝑍 ∈ V → ( 𝜑 → ( ( 𝑘 ∈ 𝐴 ↦ 𝐵 ) supp 𝑍 ) ⊆ 𝑊 ) ) |
25 |
17 24
|
pm2.61i |
⊢ ( 𝜑 → ( ( 𝑘 ∈ 𝐴 ↦ 𝐵 ) supp 𝑍 ) ⊆ 𝑊 ) |