Metamath Proof Explorer


Theorem suppss2f

Description: Show that the support of a function is contained in a set. (Contributed by Thierry Arnoux, 22-Jun-2017) (Revised by AV, 1-Sep-2020)

Ref Expression
Hypotheses suppss2f.p 𝑘 𝜑
suppss2f.a 𝑘 𝐴
suppss2f.w 𝑘 𝑊
suppss2f.n ( ( 𝜑𝑘 ∈ ( 𝐴𝑊 ) ) → 𝐵 = 𝑍 )
suppss2f.v ( 𝜑𝐴𝑉 )
Assertion suppss2f ( 𝜑 → ( ( 𝑘𝐴𝐵 ) supp 𝑍 ) ⊆ 𝑊 )

Proof

Step Hyp Ref Expression
1 suppss2f.p 𝑘 𝜑
2 suppss2f.a 𝑘 𝐴
3 suppss2f.w 𝑘 𝑊
4 suppss2f.n ( ( 𝜑𝑘 ∈ ( 𝐴𝑊 ) ) → 𝐵 = 𝑍 )
5 suppss2f.v ( 𝜑𝐴𝑉 )
6 nfcv 𝑙 𝐴
7 nfcv 𝑙 𝐵
8 nfcsb1v 𝑘 𝑙 / 𝑘 𝐵
9 csbeq1a ( 𝑘 = 𝑙𝐵 = 𝑙 / 𝑘 𝐵 )
10 2 6 7 8 9 cbvmptf ( 𝑘𝐴𝐵 ) = ( 𝑙𝐴 𝑙 / 𝑘 𝐵 )
11 10 oveq1i ( ( 𝑘𝐴𝐵 ) supp 𝑍 ) = ( ( 𝑙𝐴 𝑙 / 𝑘 𝐵 ) supp 𝑍 )
12 4 sbt [ 𝑙 / 𝑘 ] ( ( 𝜑𝑘 ∈ ( 𝐴𝑊 ) ) → 𝐵 = 𝑍 )
13 sbim ( [ 𝑙 / 𝑘 ] ( ( 𝜑𝑘 ∈ ( 𝐴𝑊 ) ) → 𝐵 = 𝑍 ) ↔ ( [ 𝑙 / 𝑘 ] ( 𝜑𝑘 ∈ ( 𝐴𝑊 ) ) → [ 𝑙 / 𝑘 ] 𝐵 = 𝑍 ) )
14 sban ( [ 𝑙 / 𝑘 ] ( 𝜑𝑘 ∈ ( 𝐴𝑊 ) ) ↔ ( [ 𝑙 / 𝑘 ] 𝜑 ∧ [ 𝑙 / 𝑘 ] 𝑘 ∈ ( 𝐴𝑊 ) ) )
15 1 sbf ( [ 𝑙 / 𝑘 ] 𝜑𝜑 )
16 2 3 nfdif 𝑘 ( 𝐴𝑊 )
17 16 clelsb1fw ( [ 𝑙 / 𝑘 ] 𝑘 ∈ ( 𝐴𝑊 ) ↔ 𝑙 ∈ ( 𝐴𝑊 ) )
18 15 17 anbi12i ( ( [ 𝑙 / 𝑘 ] 𝜑 ∧ [ 𝑙 / 𝑘 ] 𝑘 ∈ ( 𝐴𝑊 ) ) ↔ ( 𝜑𝑙 ∈ ( 𝐴𝑊 ) ) )
19 14 18 bitri ( [ 𝑙 / 𝑘 ] ( 𝜑𝑘 ∈ ( 𝐴𝑊 ) ) ↔ ( 𝜑𝑙 ∈ ( 𝐴𝑊 ) ) )
20 sbsbc ( [ 𝑙 / 𝑘 ] 𝐵 = 𝑍[ 𝑙 / 𝑘 ] 𝐵 = 𝑍 )
21 sbceq1g ( 𝑙 ∈ V → ( [ 𝑙 / 𝑘 ] 𝐵 = 𝑍 𝑙 / 𝑘 𝐵 = 𝑍 ) )
22 21 elv ( [ 𝑙 / 𝑘 ] 𝐵 = 𝑍 𝑙 / 𝑘 𝐵 = 𝑍 )
23 20 22 bitri ( [ 𝑙 / 𝑘 ] 𝐵 = 𝑍 𝑙 / 𝑘 𝐵 = 𝑍 )
24 19 23 imbi12i ( ( [ 𝑙 / 𝑘 ] ( 𝜑𝑘 ∈ ( 𝐴𝑊 ) ) → [ 𝑙 / 𝑘 ] 𝐵 = 𝑍 ) ↔ ( ( 𝜑𝑙 ∈ ( 𝐴𝑊 ) ) → 𝑙 / 𝑘 𝐵 = 𝑍 ) )
25 13 24 bitri ( [ 𝑙 / 𝑘 ] ( ( 𝜑𝑘 ∈ ( 𝐴𝑊 ) ) → 𝐵 = 𝑍 ) ↔ ( ( 𝜑𝑙 ∈ ( 𝐴𝑊 ) ) → 𝑙 / 𝑘 𝐵 = 𝑍 ) )
26 12 25 mpbi ( ( 𝜑𝑙 ∈ ( 𝐴𝑊 ) ) → 𝑙 / 𝑘 𝐵 = 𝑍 )
27 26 5 suppss2 ( 𝜑 → ( ( 𝑙𝐴 𝑙 / 𝑘 𝐵 ) supp 𝑍 ) ⊆ 𝑊 )
28 11 27 eqsstrid ( 𝜑 → ( ( 𝑘𝐴𝐵 ) supp 𝑍 ) ⊆ 𝑊 )