Step |
Hyp |
Ref |
Expression |
1 |
|
suppss2f.p |
⊢ Ⅎ 𝑘 𝜑 |
2 |
|
suppss2f.a |
⊢ Ⅎ 𝑘 𝐴 |
3 |
|
suppss2f.w |
⊢ Ⅎ 𝑘 𝑊 |
4 |
|
suppss2f.n |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 𝐴 ∖ 𝑊 ) ) → 𝐵 = 𝑍 ) |
5 |
|
suppss2f.v |
⊢ ( 𝜑 → 𝐴 ∈ 𝑉 ) |
6 |
|
nfcv |
⊢ Ⅎ 𝑙 𝐴 |
7 |
|
nfcv |
⊢ Ⅎ 𝑙 𝐵 |
8 |
|
nfcsb1v |
⊢ Ⅎ 𝑘 ⦋ 𝑙 / 𝑘 ⦌ 𝐵 |
9 |
|
csbeq1a |
⊢ ( 𝑘 = 𝑙 → 𝐵 = ⦋ 𝑙 / 𝑘 ⦌ 𝐵 ) |
10 |
2 6 7 8 9
|
cbvmptf |
⊢ ( 𝑘 ∈ 𝐴 ↦ 𝐵 ) = ( 𝑙 ∈ 𝐴 ↦ ⦋ 𝑙 / 𝑘 ⦌ 𝐵 ) |
11 |
10
|
oveq1i |
⊢ ( ( 𝑘 ∈ 𝐴 ↦ 𝐵 ) supp 𝑍 ) = ( ( 𝑙 ∈ 𝐴 ↦ ⦋ 𝑙 / 𝑘 ⦌ 𝐵 ) supp 𝑍 ) |
12 |
4
|
sbt |
⊢ [ 𝑙 / 𝑘 ] ( ( 𝜑 ∧ 𝑘 ∈ ( 𝐴 ∖ 𝑊 ) ) → 𝐵 = 𝑍 ) |
13 |
|
sbim |
⊢ ( [ 𝑙 / 𝑘 ] ( ( 𝜑 ∧ 𝑘 ∈ ( 𝐴 ∖ 𝑊 ) ) → 𝐵 = 𝑍 ) ↔ ( [ 𝑙 / 𝑘 ] ( 𝜑 ∧ 𝑘 ∈ ( 𝐴 ∖ 𝑊 ) ) → [ 𝑙 / 𝑘 ] 𝐵 = 𝑍 ) ) |
14 |
|
sban |
⊢ ( [ 𝑙 / 𝑘 ] ( 𝜑 ∧ 𝑘 ∈ ( 𝐴 ∖ 𝑊 ) ) ↔ ( [ 𝑙 / 𝑘 ] 𝜑 ∧ [ 𝑙 / 𝑘 ] 𝑘 ∈ ( 𝐴 ∖ 𝑊 ) ) ) |
15 |
1
|
sbf |
⊢ ( [ 𝑙 / 𝑘 ] 𝜑 ↔ 𝜑 ) |
16 |
2 3
|
nfdif |
⊢ Ⅎ 𝑘 ( 𝐴 ∖ 𝑊 ) |
17 |
16
|
clelsb1fw |
⊢ ( [ 𝑙 / 𝑘 ] 𝑘 ∈ ( 𝐴 ∖ 𝑊 ) ↔ 𝑙 ∈ ( 𝐴 ∖ 𝑊 ) ) |
18 |
15 17
|
anbi12i |
⊢ ( ( [ 𝑙 / 𝑘 ] 𝜑 ∧ [ 𝑙 / 𝑘 ] 𝑘 ∈ ( 𝐴 ∖ 𝑊 ) ) ↔ ( 𝜑 ∧ 𝑙 ∈ ( 𝐴 ∖ 𝑊 ) ) ) |
19 |
14 18
|
bitri |
⊢ ( [ 𝑙 / 𝑘 ] ( 𝜑 ∧ 𝑘 ∈ ( 𝐴 ∖ 𝑊 ) ) ↔ ( 𝜑 ∧ 𝑙 ∈ ( 𝐴 ∖ 𝑊 ) ) ) |
20 |
|
sbsbc |
⊢ ( [ 𝑙 / 𝑘 ] 𝐵 = 𝑍 ↔ [ 𝑙 / 𝑘 ] 𝐵 = 𝑍 ) |
21 |
|
sbceq1g |
⊢ ( 𝑙 ∈ V → ( [ 𝑙 / 𝑘 ] 𝐵 = 𝑍 ↔ ⦋ 𝑙 / 𝑘 ⦌ 𝐵 = 𝑍 ) ) |
22 |
21
|
elv |
⊢ ( [ 𝑙 / 𝑘 ] 𝐵 = 𝑍 ↔ ⦋ 𝑙 / 𝑘 ⦌ 𝐵 = 𝑍 ) |
23 |
20 22
|
bitri |
⊢ ( [ 𝑙 / 𝑘 ] 𝐵 = 𝑍 ↔ ⦋ 𝑙 / 𝑘 ⦌ 𝐵 = 𝑍 ) |
24 |
19 23
|
imbi12i |
⊢ ( ( [ 𝑙 / 𝑘 ] ( 𝜑 ∧ 𝑘 ∈ ( 𝐴 ∖ 𝑊 ) ) → [ 𝑙 / 𝑘 ] 𝐵 = 𝑍 ) ↔ ( ( 𝜑 ∧ 𝑙 ∈ ( 𝐴 ∖ 𝑊 ) ) → ⦋ 𝑙 / 𝑘 ⦌ 𝐵 = 𝑍 ) ) |
25 |
13 24
|
bitri |
⊢ ( [ 𝑙 / 𝑘 ] ( ( 𝜑 ∧ 𝑘 ∈ ( 𝐴 ∖ 𝑊 ) ) → 𝐵 = 𝑍 ) ↔ ( ( 𝜑 ∧ 𝑙 ∈ ( 𝐴 ∖ 𝑊 ) ) → ⦋ 𝑙 / 𝑘 ⦌ 𝐵 = 𝑍 ) ) |
26 |
12 25
|
mpbi |
⊢ ( ( 𝜑 ∧ 𝑙 ∈ ( 𝐴 ∖ 𝑊 ) ) → ⦋ 𝑙 / 𝑘 ⦌ 𝐵 = 𝑍 ) |
27 |
26 5
|
suppss2 |
⊢ ( 𝜑 → ( ( 𝑙 ∈ 𝐴 ↦ ⦋ 𝑙 / 𝑘 ⦌ 𝐵 ) supp 𝑍 ) ⊆ 𝑊 ) |
28 |
11 27
|
eqsstrid |
⊢ ( 𝜑 → ( ( 𝑘 ∈ 𝐴 ↦ 𝐵 ) supp 𝑍 ) ⊆ 𝑊 ) |