Step |
Hyp |
Ref |
Expression |
1 |
|
suppss3.1 |
⊢ 𝐺 = ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) |
2 |
|
suppss3.a |
⊢ ( 𝜑 → 𝐴 ∈ 𝑉 ) |
3 |
|
suppss3.z |
⊢ ( 𝜑 → 𝑍 ∈ 𝑊 ) |
4 |
|
suppss3.2 |
⊢ ( 𝜑 → 𝐹 Fn 𝐴 ) |
5 |
|
suppss3.3 |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ∧ ( 𝐹 ‘ 𝑥 ) = 𝑍 ) → 𝐵 = 𝑍 ) |
6 |
1
|
oveq1i |
⊢ ( 𝐺 supp 𝑍 ) = ( ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) supp 𝑍 ) |
7 |
|
simpl |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐴 ∖ ( 𝐹 supp 𝑍 ) ) ) → 𝜑 ) |
8 |
|
eldifi |
⊢ ( 𝑥 ∈ ( 𝐴 ∖ ( 𝐹 supp 𝑍 ) ) → 𝑥 ∈ 𝐴 ) |
9 |
8
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐴 ∖ ( 𝐹 supp 𝑍 ) ) ) → 𝑥 ∈ 𝐴 ) |
10 |
|
fnex |
⊢ ( ( 𝐹 Fn 𝐴 ∧ 𝐴 ∈ 𝑉 ) → 𝐹 ∈ V ) |
11 |
4 2 10
|
syl2anc |
⊢ ( 𝜑 → 𝐹 ∈ V ) |
12 |
|
suppimacnv |
⊢ ( ( 𝐹 ∈ V ∧ 𝑍 ∈ 𝑊 ) → ( 𝐹 supp 𝑍 ) = ( ◡ 𝐹 “ ( V ∖ { 𝑍 } ) ) ) |
13 |
11 3 12
|
syl2anc |
⊢ ( 𝜑 → ( 𝐹 supp 𝑍 ) = ( ◡ 𝐹 “ ( V ∖ { 𝑍 } ) ) ) |
14 |
13
|
eleq2d |
⊢ ( 𝜑 → ( 𝑥 ∈ ( 𝐹 supp 𝑍 ) ↔ 𝑥 ∈ ( ◡ 𝐹 “ ( V ∖ { 𝑍 } ) ) ) ) |
15 |
|
elpreima |
⊢ ( 𝐹 Fn 𝐴 → ( 𝑥 ∈ ( ◡ 𝐹 “ ( V ∖ { 𝑍 } ) ) ↔ ( 𝑥 ∈ 𝐴 ∧ ( 𝐹 ‘ 𝑥 ) ∈ ( V ∖ { 𝑍 } ) ) ) ) |
16 |
4 15
|
syl |
⊢ ( 𝜑 → ( 𝑥 ∈ ( ◡ 𝐹 “ ( V ∖ { 𝑍 } ) ) ↔ ( 𝑥 ∈ 𝐴 ∧ ( 𝐹 ‘ 𝑥 ) ∈ ( V ∖ { 𝑍 } ) ) ) ) |
17 |
14 16
|
bitrd |
⊢ ( 𝜑 → ( 𝑥 ∈ ( 𝐹 supp 𝑍 ) ↔ ( 𝑥 ∈ 𝐴 ∧ ( 𝐹 ‘ 𝑥 ) ∈ ( V ∖ { 𝑍 } ) ) ) ) |
18 |
17
|
baibd |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → ( 𝑥 ∈ ( 𝐹 supp 𝑍 ) ↔ ( 𝐹 ‘ 𝑥 ) ∈ ( V ∖ { 𝑍 } ) ) ) |
19 |
18
|
notbid |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → ( ¬ 𝑥 ∈ ( 𝐹 supp 𝑍 ) ↔ ¬ ( 𝐹 ‘ 𝑥 ) ∈ ( V ∖ { 𝑍 } ) ) ) |
20 |
19
|
biimpd |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → ( ¬ 𝑥 ∈ ( 𝐹 supp 𝑍 ) → ¬ ( 𝐹 ‘ 𝑥 ) ∈ ( V ∖ { 𝑍 } ) ) ) |
21 |
20
|
expimpd |
⊢ ( 𝜑 → ( ( 𝑥 ∈ 𝐴 ∧ ¬ 𝑥 ∈ ( 𝐹 supp 𝑍 ) ) → ¬ ( 𝐹 ‘ 𝑥 ) ∈ ( V ∖ { 𝑍 } ) ) ) |
22 |
|
eldif |
⊢ ( 𝑥 ∈ ( 𝐴 ∖ ( 𝐹 supp 𝑍 ) ) ↔ ( 𝑥 ∈ 𝐴 ∧ ¬ 𝑥 ∈ ( 𝐹 supp 𝑍 ) ) ) |
23 |
|
fvex |
⊢ ( 𝐹 ‘ 𝑥 ) ∈ V |
24 |
|
eldifsn |
⊢ ( ( 𝐹 ‘ 𝑥 ) ∈ ( V ∖ { 𝑍 } ) ↔ ( ( 𝐹 ‘ 𝑥 ) ∈ V ∧ ( 𝐹 ‘ 𝑥 ) ≠ 𝑍 ) ) |
25 |
23 24
|
mpbiran |
⊢ ( ( 𝐹 ‘ 𝑥 ) ∈ ( V ∖ { 𝑍 } ) ↔ ( 𝐹 ‘ 𝑥 ) ≠ 𝑍 ) |
26 |
25
|
necon2bbii |
⊢ ( ( 𝐹 ‘ 𝑥 ) = 𝑍 ↔ ¬ ( 𝐹 ‘ 𝑥 ) ∈ ( V ∖ { 𝑍 } ) ) |
27 |
21 22 26
|
3imtr4g |
⊢ ( 𝜑 → ( 𝑥 ∈ ( 𝐴 ∖ ( 𝐹 supp 𝑍 ) ) → ( 𝐹 ‘ 𝑥 ) = 𝑍 ) ) |
28 |
27
|
imp |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐴 ∖ ( 𝐹 supp 𝑍 ) ) ) → ( 𝐹 ‘ 𝑥 ) = 𝑍 ) |
29 |
7 9 28 5
|
syl3anc |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐴 ∖ ( 𝐹 supp 𝑍 ) ) ) → 𝐵 = 𝑍 ) |
30 |
29 2
|
suppss2 |
⊢ ( 𝜑 → ( ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) supp 𝑍 ) ⊆ ( 𝐹 supp 𝑍 ) ) |
31 |
6 30
|
eqsstrid |
⊢ ( 𝜑 → ( 𝐺 supp 𝑍 ) ⊆ ( 𝐹 supp 𝑍 ) ) |