Description: The support of a function is a subset of the function's domain. (Contributed by AV, 30-May-2019)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | suppssdm | ⊢ ( 𝐹 supp 𝑍 ) ⊆ dom 𝐹 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | suppval | ⊢ ( ( 𝐹 ∈ V ∧ 𝑍 ∈ V ) → ( 𝐹 supp 𝑍 ) = { 𝑖 ∈ dom 𝐹 ∣ ( 𝐹 “ { 𝑖 } ) ≠ { 𝑍 } } ) | |
| 2 | ssrab2 | ⊢ { 𝑖 ∈ dom 𝐹 ∣ ( 𝐹 “ { 𝑖 } ) ≠ { 𝑍 } } ⊆ dom 𝐹 | |
| 3 | 1 2 | eqsstrdi | ⊢ ( ( 𝐹 ∈ V ∧ 𝑍 ∈ V ) → ( 𝐹 supp 𝑍 ) ⊆ dom 𝐹 ) |
| 4 | supp0prc | ⊢ ( ¬ ( 𝐹 ∈ V ∧ 𝑍 ∈ V ) → ( 𝐹 supp 𝑍 ) = ∅ ) | |
| 5 | 0ss | ⊢ ∅ ⊆ dom 𝐹 | |
| 6 | 4 5 | eqsstrdi | ⊢ ( ¬ ( 𝐹 ∈ V ∧ 𝑍 ∈ V ) → ( 𝐹 supp 𝑍 ) ⊆ dom 𝐹 ) |
| 7 | 3 6 | pm2.61i | ⊢ ( 𝐹 supp 𝑍 ) ⊆ dom 𝐹 |