Metamath Proof Explorer


Theorem suppssdm

Description: The support of a function is a subset of the function's domain. (Contributed by AV, 30-May-2019)

Ref Expression
Assertion suppssdm ( 𝐹 supp 𝑍 ) ⊆ dom 𝐹

Proof

Step Hyp Ref Expression
1 suppval ( ( 𝐹 ∈ V ∧ 𝑍 ∈ V ) → ( 𝐹 supp 𝑍 ) = { 𝑖 ∈ dom 𝐹 ∣ ( 𝐹 “ { 𝑖 } ) ≠ { 𝑍 } } )
2 ssrab2 { 𝑖 ∈ dom 𝐹 ∣ ( 𝐹 “ { 𝑖 } ) ≠ { 𝑍 } } ⊆ dom 𝐹
3 1 2 eqsstrdi ( ( 𝐹 ∈ V ∧ 𝑍 ∈ V ) → ( 𝐹 supp 𝑍 ) ⊆ dom 𝐹 )
4 supp0prc ( ¬ ( 𝐹 ∈ V ∧ 𝑍 ∈ V ) → ( 𝐹 supp 𝑍 ) = ∅ )
5 0ss ∅ ⊆ dom 𝐹
6 4 5 eqsstrdi ( ¬ ( 𝐹 ∈ V ∧ 𝑍 ∈ V ) → ( 𝐹 supp 𝑍 ) ⊆ dom 𝐹 )
7 3 6 pm2.61i ( 𝐹 supp 𝑍 ) ⊆ dom 𝐹