Metamath Proof Explorer


Theorem suppssfifsupp

Description: If the support of a function is a subset of a finite set, the function is finitely supported. (Contributed by AV, 15-Jul-2019)

Ref Expression
Assertion suppssfifsupp ( ( ( 𝐺𝑉 ∧ Fun 𝐺𝑍𝑊 ) ∧ ( 𝐹 ∈ Fin ∧ ( 𝐺 supp 𝑍 ) ⊆ 𝐹 ) ) → 𝐺 finSupp 𝑍 )

Proof

Step Hyp Ref Expression
1 ssfi ( ( 𝐹 ∈ Fin ∧ ( 𝐺 supp 𝑍 ) ⊆ 𝐹 ) → ( 𝐺 supp 𝑍 ) ∈ Fin )
2 1 adantl ( ( ( 𝐺𝑉 ∧ Fun 𝐺𝑍𝑊 ) ∧ ( 𝐹 ∈ Fin ∧ ( 𝐺 supp 𝑍 ) ⊆ 𝐹 ) ) → ( 𝐺 supp 𝑍 ) ∈ Fin )
3 3ancoma ( ( 𝐺𝑉 ∧ Fun 𝐺𝑍𝑊 ) ↔ ( Fun 𝐺𝐺𝑉𝑍𝑊 ) )
4 3 biimpi ( ( 𝐺𝑉 ∧ Fun 𝐺𝑍𝑊 ) → ( Fun 𝐺𝐺𝑉𝑍𝑊 ) )
5 4 adantr ( ( ( 𝐺𝑉 ∧ Fun 𝐺𝑍𝑊 ) ∧ ( 𝐹 ∈ Fin ∧ ( 𝐺 supp 𝑍 ) ⊆ 𝐹 ) ) → ( Fun 𝐺𝐺𝑉𝑍𝑊 ) )
6 funisfsupp ( ( Fun 𝐺𝐺𝑉𝑍𝑊 ) → ( 𝐺 finSupp 𝑍 ↔ ( 𝐺 supp 𝑍 ) ∈ Fin ) )
7 5 6 syl ( ( ( 𝐺𝑉 ∧ Fun 𝐺𝑍𝑊 ) ∧ ( 𝐹 ∈ Fin ∧ ( 𝐺 supp 𝑍 ) ⊆ 𝐹 ) ) → ( 𝐺 finSupp 𝑍 ↔ ( 𝐺 supp 𝑍 ) ∈ Fin ) )
8 2 7 mpbird ( ( ( 𝐺𝑉 ∧ Fun 𝐺𝑍𝑊 ) ∧ ( 𝐹 ∈ Fin ∧ ( 𝐺 supp 𝑍 ) ⊆ 𝐹 ) ) → 𝐺 finSupp 𝑍 )