| Step |
Hyp |
Ref |
Expression |
| 1 |
|
suppssfv.a |
⊢ ( 𝜑 → ( ( 𝑥 ∈ 𝐷 ↦ 𝐴 ) supp 𝑌 ) ⊆ 𝐿 ) |
| 2 |
|
suppssfv.f |
⊢ ( 𝜑 → ( 𝐹 ‘ 𝑌 ) = 𝑍 ) |
| 3 |
|
suppssfv.v |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐷 ) → 𝐴 ∈ 𝑉 ) |
| 4 |
|
suppssfv.y |
⊢ ( 𝜑 → 𝑌 ∈ 𝑈 ) |
| 5 |
|
eldifsni |
⊢ ( ( 𝐹 ‘ 𝐴 ) ∈ ( V ∖ { 𝑍 } ) → ( 𝐹 ‘ 𝐴 ) ≠ 𝑍 ) |
| 6 |
3
|
elexd |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐷 ) → 𝐴 ∈ V ) |
| 7 |
6
|
ad4ant23 |
⊢ ( ( ( ( ( 𝐷 ∈ V ∧ 𝑍 ∈ V ) ∧ 𝜑 ) ∧ 𝑥 ∈ 𝐷 ) ∧ ( 𝐹 ‘ 𝐴 ) ≠ 𝑍 ) → 𝐴 ∈ V ) |
| 8 |
|
fveqeq2 |
⊢ ( 𝐴 = 𝑌 → ( ( 𝐹 ‘ 𝐴 ) = 𝑍 ↔ ( 𝐹 ‘ 𝑌 ) = 𝑍 ) ) |
| 9 |
2 8
|
syl5ibrcom |
⊢ ( 𝜑 → ( 𝐴 = 𝑌 → ( 𝐹 ‘ 𝐴 ) = 𝑍 ) ) |
| 10 |
9
|
necon3d |
⊢ ( 𝜑 → ( ( 𝐹 ‘ 𝐴 ) ≠ 𝑍 → 𝐴 ≠ 𝑌 ) ) |
| 11 |
10
|
ad2antlr |
⊢ ( ( ( ( 𝐷 ∈ V ∧ 𝑍 ∈ V ) ∧ 𝜑 ) ∧ 𝑥 ∈ 𝐷 ) → ( ( 𝐹 ‘ 𝐴 ) ≠ 𝑍 → 𝐴 ≠ 𝑌 ) ) |
| 12 |
11
|
imp |
⊢ ( ( ( ( ( 𝐷 ∈ V ∧ 𝑍 ∈ V ) ∧ 𝜑 ) ∧ 𝑥 ∈ 𝐷 ) ∧ ( 𝐹 ‘ 𝐴 ) ≠ 𝑍 ) → 𝐴 ≠ 𝑌 ) |
| 13 |
|
eldifsn |
⊢ ( 𝐴 ∈ ( V ∖ { 𝑌 } ) ↔ ( 𝐴 ∈ V ∧ 𝐴 ≠ 𝑌 ) ) |
| 14 |
7 12 13
|
sylanbrc |
⊢ ( ( ( ( ( 𝐷 ∈ V ∧ 𝑍 ∈ V ) ∧ 𝜑 ) ∧ 𝑥 ∈ 𝐷 ) ∧ ( 𝐹 ‘ 𝐴 ) ≠ 𝑍 ) → 𝐴 ∈ ( V ∖ { 𝑌 } ) ) |
| 15 |
14
|
ex |
⊢ ( ( ( ( 𝐷 ∈ V ∧ 𝑍 ∈ V ) ∧ 𝜑 ) ∧ 𝑥 ∈ 𝐷 ) → ( ( 𝐹 ‘ 𝐴 ) ≠ 𝑍 → 𝐴 ∈ ( V ∖ { 𝑌 } ) ) ) |
| 16 |
5 15
|
syl5 |
⊢ ( ( ( ( 𝐷 ∈ V ∧ 𝑍 ∈ V ) ∧ 𝜑 ) ∧ 𝑥 ∈ 𝐷 ) → ( ( 𝐹 ‘ 𝐴 ) ∈ ( V ∖ { 𝑍 } ) → 𝐴 ∈ ( V ∖ { 𝑌 } ) ) ) |
| 17 |
16
|
ss2rabdv |
⊢ ( ( ( 𝐷 ∈ V ∧ 𝑍 ∈ V ) ∧ 𝜑 ) → { 𝑥 ∈ 𝐷 ∣ ( 𝐹 ‘ 𝐴 ) ∈ ( V ∖ { 𝑍 } ) } ⊆ { 𝑥 ∈ 𝐷 ∣ 𝐴 ∈ ( V ∖ { 𝑌 } ) } ) |
| 18 |
|
eqid |
⊢ ( 𝑥 ∈ 𝐷 ↦ ( 𝐹 ‘ 𝐴 ) ) = ( 𝑥 ∈ 𝐷 ↦ ( 𝐹 ‘ 𝐴 ) ) |
| 19 |
|
simpll |
⊢ ( ( ( 𝐷 ∈ V ∧ 𝑍 ∈ V ) ∧ 𝜑 ) → 𝐷 ∈ V ) |
| 20 |
|
simplr |
⊢ ( ( ( 𝐷 ∈ V ∧ 𝑍 ∈ V ) ∧ 𝜑 ) → 𝑍 ∈ V ) |
| 21 |
18 19 20
|
mptsuppdifd |
⊢ ( ( ( 𝐷 ∈ V ∧ 𝑍 ∈ V ) ∧ 𝜑 ) → ( ( 𝑥 ∈ 𝐷 ↦ ( 𝐹 ‘ 𝐴 ) ) supp 𝑍 ) = { 𝑥 ∈ 𝐷 ∣ ( 𝐹 ‘ 𝐴 ) ∈ ( V ∖ { 𝑍 } ) } ) |
| 22 |
|
eqid |
⊢ ( 𝑥 ∈ 𝐷 ↦ 𝐴 ) = ( 𝑥 ∈ 𝐷 ↦ 𝐴 ) |
| 23 |
4
|
adantl |
⊢ ( ( ( 𝐷 ∈ V ∧ 𝑍 ∈ V ) ∧ 𝜑 ) → 𝑌 ∈ 𝑈 ) |
| 24 |
22 19 23
|
mptsuppdifd |
⊢ ( ( ( 𝐷 ∈ V ∧ 𝑍 ∈ V ) ∧ 𝜑 ) → ( ( 𝑥 ∈ 𝐷 ↦ 𝐴 ) supp 𝑌 ) = { 𝑥 ∈ 𝐷 ∣ 𝐴 ∈ ( V ∖ { 𝑌 } ) } ) |
| 25 |
17 21 24
|
3sstr4d |
⊢ ( ( ( 𝐷 ∈ V ∧ 𝑍 ∈ V ) ∧ 𝜑 ) → ( ( 𝑥 ∈ 𝐷 ↦ ( 𝐹 ‘ 𝐴 ) ) supp 𝑍 ) ⊆ ( ( 𝑥 ∈ 𝐷 ↦ 𝐴 ) supp 𝑌 ) ) |
| 26 |
1
|
adantl |
⊢ ( ( ( 𝐷 ∈ V ∧ 𝑍 ∈ V ) ∧ 𝜑 ) → ( ( 𝑥 ∈ 𝐷 ↦ 𝐴 ) supp 𝑌 ) ⊆ 𝐿 ) |
| 27 |
25 26
|
sstrd |
⊢ ( ( ( 𝐷 ∈ V ∧ 𝑍 ∈ V ) ∧ 𝜑 ) → ( ( 𝑥 ∈ 𝐷 ↦ ( 𝐹 ‘ 𝐴 ) ) supp 𝑍 ) ⊆ 𝐿 ) |
| 28 |
27
|
ex |
⊢ ( ( 𝐷 ∈ V ∧ 𝑍 ∈ V ) → ( 𝜑 → ( ( 𝑥 ∈ 𝐷 ↦ ( 𝐹 ‘ 𝐴 ) ) supp 𝑍 ) ⊆ 𝐿 ) ) |
| 29 |
|
mptexg |
⊢ ( 𝐷 ∈ V → ( 𝑥 ∈ 𝐷 ↦ ( 𝐹 ‘ 𝐴 ) ) ∈ V ) |
| 30 |
|
fvex |
⊢ ( 𝐹 ‘ 𝐴 ) ∈ V |
| 31 |
30
|
rgenw |
⊢ ∀ 𝑥 ∈ 𝐷 ( 𝐹 ‘ 𝐴 ) ∈ V |
| 32 |
|
dmmptg |
⊢ ( ∀ 𝑥 ∈ 𝐷 ( 𝐹 ‘ 𝐴 ) ∈ V → dom ( 𝑥 ∈ 𝐷 ↦ ( 𝐹 ‘ 𝐴 ) ) = 𝐷 ) |
| 33 |
31 32
|
ax-mp |
⊢ dom ( 𝑥 ∈ 𝐷 ↦ ( 𝐹 ‘ 𝐴 ) ) = 𝐷 |
| 34 |
|
dmexg |
⊢ ( ( 𝑥 ∈ 𝐷 ↦ ( 𝐹 ‘ 𝐴 ) ) ∈ V → dom ( 𝑥 ∈ 𝐷 ↦ ( 𝐹 ‘ 𝐴 ) ) ∈ V ) |
| 35 |
33 34
|
eqeltrrid |
⊢ ( ( 𝑥 ∈ 𝐷 ↦ ( 𝐹 ‘ 𝐴 ) ) ∈ V → 𝐷 ∈ V ) |
| 36 |
29 35
|
impbii |
⊢ ( 𝐷 ∈ V ↔ ( 𝑥 ∈ 𝐷 ↦ ( 𝐹 ‘ 𝐴 ) ) ∈ V ) |
| 37 |
36
|
anbi1i |
⊢ ( ( 𝐷 ∈ V ∧ 𝑍 ∈ V ) ↔ ( ( 𝑥 ∈ 𝐷 ↦ ( 𝐹 ‘ 𝐴 ) ) ∈ V ∧ 𝑍 ∈ V ) ) |
| 38 |
|
supp0prc |
⊢ ( ¬ ( ( 𝑥 ∈ 𝐷 ↦ ( 𝐹 ‘ 𝐴 ) ) ∈ V ∧ 𝑍 ∈ V ) → ( ( 𝑥 ∈ 𝐷 ↦ ( 𝐹 ‘ 𝐴 ) ) supp 𝑍 ) = ∅ ) |
| 39 |
37 38
|
sylnbi |
⊢ ( ¬ ( 𝐷 ∈ V ∧ 𝑍 ∈ V ) → ( ( 𝑥 ∈ 𝐷 ↦ ( 𝐹 ‘ 𝐴 ) ) supp 𝑍 ) = ∅ ) |
| 40 |
|
0ss |
⊢ ∅ ⊆ 𝐿 |
| 41 |
39 40
|
eqsstrdi |
⊢ ( ¬ ( 𝐷 ∈ V ∧ 𝑍 ∈ V ) → ( ( 𝑥 ∈ 𝐷 ↦ ( 𝐹 ‘ 𝐴 ) ) supp 𝑍 ) ⊆ 𝐿 ) |
| 42 |
41
|
a1d |
⊢ ( ¬ ( 𝐷 ∈ V ∧ 𝑍 ∈ V ) → ( 𝜑 → ( ( 𝑥 ∈ 𝐷 ↦ ( 𝐹 ‘ 𝐴 ) ) supp 𝑍 ) ⊆ 𝐿 ) ) |
| 43 |
28 42
|
pm2.61i |
⊢ ( 𝜑 → ( ( 𝑥 ∈ 𝐷 ↦ ( 𝐹 ‘ 𝐴 ) ) supp 𝑍 ) ⊆ 𝐿 ) |