Step |
Hyp |
Ref |
Expression |
1 |
|
suppssnn0.f |
⊢ ( 𝜑 → 𝐹 Fn ℕ0 ) |
2 |
|
suppssnn0.n |
⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ℕ0 ) ∧ 𝑁 ≤ 𝑘 ) → ( 𝐹 ‘ 𝑘 ) = 𝑍 ) |
3 |
|
suppssnn0.1 |
⊢ ( 𝜑 → 𝑁 ∈ ℤ ) |
4 |
|
dffn3 |
⊢ ( 𝐹 Fn ℕ0 ↔ 𝐹 : ℕ0 ⟶ ran 𝐹 ) |
5 |
1 4
|
sylib |
⊢ ( 𝜑 → 𝐹 : ℕ0 ⟶ ran 𝐹 ) |
6 |
|
simpl |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( ℕ0 ∖ ( 0 ..^ 𝑁 ) ) ) → 𝜑 ) |
7 |
|
eldifi |
⊢ ( 𝑘 ∈ ( ℕ0 ∖ ( 0 ..^ 𝑁 ) ) → 𝑘 ∈ ℕ0 ) |
8 |
7
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( ℕ0 ∖ ( 0 ..^ 𝑁 ) ) ) → 𝑘 ∈ ℕ0 ) |
9 |
3
|
zred |
⊢ ( 𝜑 → 𝑁 ∈ ℝ ) |
10 |
9
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( ℕ0 ∖ ( 0 ..^ 𝑁 ) ) ) → 𝑁 ∈ ℝ ) |
11 |
8
|
nn0red |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( ℕ0 ∖ ( 0 ..^ 𝑁 ) ) ) → 𝑘 ∈ ℝ ) |
12 |
3
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( ℕ0 ∖ ( 0 ..^ 𝑁 ) ) ) → 𝑁 ∈ ℤ ) |
13 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( ℕ0 ∖ ( 0 ..^ 𝑁 ) ) ) → 𝑘 ∈ ( ℕ0 ∖ ( 0 ..^ 𝑁 ) ) ) |
14 |
12 13
|
nn0difffzod |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( ℕ0 ∖ ( 0 ..^ 𝑁 ) ) ) → ¬ 𝑘 < 𝑁 ) |
15 |
10 11 14
|
nltled |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( ℕ0 ∖ ( 0 ..^ 𝑁 ) ) ) → 𝑁 ≤ 𝑘 ) |
16 |
6 8 15 2
|
syl21anc |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( ℕ0 ∖ ( 0 ..^ 𝑁 ) ) ) → ( 𝐹 ‘ 𝑘 ) = 𝑍 ) |
17 |
5 16
|
suppss |
⊢ ( 𝜑 → ( 𝐹 supp 𝑍 ) ⊆ ( 0 ..^ 𝑁 ) ) |