| Step |
Hyp |
Ref |
Expression |
| 1 |
|
suppssof1.s |
⊢ ( 𝜑 → ( 𝐴 supp 𝑌 ) ⊆ 𝐿 ) |
| 2 |
|
suppssof1.o |
⊢ ( ( 𝜑 ∧ 𝑣 ∈ 𝑅 ) → ( 𝑌 𝑂 𝑣 ) = 𝑍 ) |
| 3 |
|
suppssof1.a |
⊢ ( 𝜑 → 𝐴 : 𝐷 ⟶ 𝑉 ) |
| 4 |
|
suppssof1.b |
⊢ ( 𝜑 → 𝐵 : 𝐷 ⟶ 𝑅 ) |
| 5 |
|
suppssof1.d |
⊢ ( 𝜑 → 𝐷 ∈ 𝑊 ) |
| 6 |
|
suppssof1.y |
⊢ ( 𝜑 → 𝑌 ∈ 𝑈 ) |
| 7 |
3
|
ffnd |
⊢ ( 𝜑 → 𝐴 Fn 𝐷 ) |
| 8 |
4
|
ffnd |
⊢ ( 𝜑 → 𝐵 Fn 𝐷 ) |
| 9 |
|
inidm |
⊢ ( 𝐷 ∩ 𝐷 ) = 𝐷 |
| 10 |
|
eqidd |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐷 ) → ( 𝐴 ‘ 𝑥 ) = ( 𝐴 ‘ 𝑥 ) ) |
| 11 |
|
eqidd |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐷 ) → ( 𝐵 ‘ 𝑥 ) = ( 𝐵 ‘ 𝑥 ) ) |
| 12 |
7 8 5 5 9 10 11
|
offval |
⊢ ( 𝜑 → ( 𝐴 ∘f 𝑂 𝐵 ) = ( 𝑥 ∈ 𝐷 ↦ ( ( 𝐴 ‘ 𝑥 ) 𝑂 ( 𝐵 ‘ 𝑥 ) ) ) ) |
| 13 |
12
|
oveq1d |
⊢ ( 𝜑 → ( ( 𝐴 ∘f 𝑂 𝐵 ) supp 𝑍 ) = ( ( 𝑥 ∈ 𝐷 ↦ ( ( 𝐴 ‘ 𝑥 ) 𝑂 ( 𝐵 ‘ 𝑥 ) ) ) supp 𝑍 ) ) |
| 14 |
3
|
feqmptd |
⊢ ( 𝜑 → 𝐴 = ( 𝑥 ∈ 𝐷 ↦ ( 𝐴 ‘ 𝑥 ) ) ) |
| 15 |
14
|
oveq1d |
⊢ ( 𝜑 → ( 𝐴 supp 𝑌 ) = ( ( 𝑥 ∈ 𝐷 ↦ ( 𝐴 ‘ 𝑥 ) ) supp 𝑌 ) ) |
| 16 |
15 1
|
eqsstrrd |
⊢ ( 𝜑 → ( ( 𝑥 ∈ 𝐷 ↦ ( 𝐴 ‘ 𝑥 ) ) supp 𝑌 ) ⊆ 𝐿 ) |
| 17 |
|
fvexd |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐷 ) → ( 𝐴 ‘ 𝑥 ) ∈ V ) |
| 18 |
4
|
ffvelcdmda |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐷 ) → ( 𝐵 ‘ 𝑥 ) ∈ 𝑅 ) |
| 19 |
16 2 17 18 6
|
suppssov1 |
⊢ ( 𝜑 → ( ( 𝑥 ∈ 𝐷 ↦ ( ( 𝐴 ‘ 𝑥 ) 𝑂 ( 𝐵 ‘ 𝑥 ) ) ) supp 𝑍 ) ⊆ 𝐿 ) |
| 20 |
13 19
|
eqsstrd |
⊢ ( 𝜑 → ( ( 𝐴 ∘f 𝑂 𝐵 ) supp 𝑍 ) ⊆ 𝐿 ) |