Metamath Proof Explorer


Theorem suppssof1

Description: Formula building theorem for support restrictions: vector operation with left annihilator. (Contributed by Stefan O'Rear, 9-Mar-2015) (Revised by AV, 28-May-2019)

Ref Expression
Hypotheses suppssof1.s ( 𝜑 → ( 𝐴 supp 𝑌 ) ⊆ 𝐿 )
suppssof1.o ( ( 𝜑𝑣𝑅 ) → ( 𝑌 𝑂 𝑣 ) = 𝑍 )
suppssof1.a ( 𝜑𝐴 : 𝐷𝑉 )
suppssof1.b ( 𝜑𝐵 : 𝐷𝑅 )
suppssof1.d ( 𝜑𝐷𝑊 )
suppssof1.y ( 𝜑𝑌𝑈 )
Assertion suppssof1 ( 𝜑 → ( ( 𝐴f 𝑂 𝐵 ) supp 𝑍 ) ⊆ 𝐿 )

Proof

Step Hyp Ref Expression
1 suppssof1.s ( 𝜑 → ( 𝐴 supp 𝑌 ) ⊆ 𝐿 )
2 suppssof1.o ( ( 𝜑𝑣𝑅 ) → ( 𝑌 𝑂 𝑣 ) = 𝑍 )
3 suppssof1.a ( 𝜑𝐴 : 𝐷𝑉 )
4 suppssof1.b ( 𝜑𝐵 : 𝐷𝑅 )
5 suppssof1.d ( 𝜑𝐷𝑊 )
6 suppssof1.y ( 𝜑𝑌𝑈 )
7 3 ffnd ( 𝜑𝐴 Fn 𝐷 )
8 4 ffnd ( 𝜑𝐵 Fn 𝐷 )
9 inidm ( 𝐷𝐷 ) = 𝐷
10 eqidd ( ( 𝜑𝑥𝐷 ) → ( 𝐴𝑥 ) = ( 𝐴𝑥 ) )
11 eqidd ( ( 𝜑𝑥𝐷 ) → ( 𝐵𝑥 ) = ( 𝐵𝑥 ) )
12 7 8 5 5 9 10 11 offval ( 𝜑 → ( 𝐴f 𝑂 𝐵 ) = ( 𝑥𝐷 ↦ ( ( 𝐴𝑥 ) 𝑂 ( 𝐵𝑥 ) ) ) )
13 12 oveq1d ( 𝜑 → ( ( 𝐴f 𝑂 𝐵 ) supp 𝑍 ) = ( ( 𝑥𝐷 ↦ ( ( 𝐴𝑥 ) 𝑂 ( 𝐵𝑥 ) ) ) supp 𝑍 ) )
14 3 feqmptd ( 𝜑𝐴 = ( 𝑥𝐷 ↦ ( 𝐴𝑥 ) ) )
15 14 oveq1d ( 𝜑 → ( 𝐴 supp 𝑌 ) = ( ( 𝑥𝐷 ↦ ( 𝐴𝑥 ) ) supp 𝑌 ) )
16 15 1 eqsstrrd ( 𝜑 → ( ( 𝑥𝐷 ↦ ( 𝐴𝑥 ) ) supp 𝑌 ) ⊆ 𝐿 )
17 fvexd ( ( 𝜑𝑥𝐷 ) → ( 𝐴𝑥 ) ∈ V )
18 4 ffvelrnda ( ( 𝜑𝑥𝐷 ) → ( 𝐵𝑥 ) ∈ 𝑅 )
19 16 2 17 18 6 suppssov1 ( 𝜑 → ( ( 𝑥𝐷 ↦ ( ( 𝐴𝑥 ) 𝑂 ( 𝐵𝑥 ) ) ) supp 𝑍 ) ⊆ 𝐿 )
20 13 19 eqsstrd ( 𝜑 → ( ( 𝐴f 𝑂 𝐵 ) supp 𝑍 ) ⊆ 𝐿 )