Step |
Hyp |
Ref |
Expression |
1 |
|
suppssov2.s |
⊢ ( 𝜑 → ( ( 𝑥 ∈ 𝐷 ↦ 𝐵 ) supp 𝑌 ) ⊆ 𝐿 ) |
2 |
|
suppssov2.o |
⊢ ( ( 𝜑 ∧ 𝑣 ∈ 𝑅 ) → ( 𝑣 𝑂 𝑌 ) = 𝑍 ) |
3 |
|
suppssov2.a |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐷 ) → 𝐴 ∈ 𝑅 ) |
4 |
|
suppssov2.b |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐷 ) → 𝐵 ∈ 𝑉 ) |
5 |
|
suppssov2.y |
⊢ ( 𝜑 → 𝑌 ∈ 𝑊 ) |
6 |
4
|
elexd |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐷 ) → 𝐵 ∈ V ) |
7 |
6
|
adantlr |
⊢ ( ( ( 𝜑 ∧ ( 𝐷 ∈ V ∧ 𝑍 ∈ V ) ) ∧ 𝑥 ∈ 𝐷 ) → 𝐵 ∈ V ) |
8 |
7
|
adantr |
⊢ ( ( ( ( 𝜑 ∧ ( 𝐷 ∈ V ∧ 𝑍 ∈ V ) ) ∧ 𝑥 ∈ 𝐷 ) ∧ ( 𝐴 𝑂 𝐵 ) ∈ ( V ∖ { 𝑍 } ) ) → 𝐵 ∈ V ) |
9 |
|
oveq1 |
⊢ ( 𝑣 = 𝐴 → ( 𝑣 𝑂 𝑌 ) = ( 𝐴 𝑂 𝑌 ) ) |
10 |
9
|
eqeq1d |
⊢ ( 𝑣 = 𝐴 → ( ( 𝑣 𝑂 𝑌 ) = 𝑍 ↔ ( 𝐴 𝑂 𝑌 ) = 𝑍 ) ) |
11 |
2
|
ralrimiva |
⊢ ( 𝜑 → ∀ 𝑣 ∈ 𝑅 ( 𝑣 𝑂 𝑌 ) = 𝑍 ) |
12 |
11
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ ( 𝐷 ∈ V ∧ 𝑍 ∈ V ) ) ∧ 𝑥 ∈ 𝐷 ) → ∀ 𝑣 ∈ 𝑅 ( 𝑣 𝑂 𝑌 ) = 𝑍 ) |
13 |
3
|
adantlr |
⊢ ( ( ( 𝜑 ∧ ( 𝐷 ∈ V ∧ 𝑍 ∈ V ) ) ∧ 𝑥 ∈ 𝐷 ) → 𝐴 ∈ 𝑅 ) |
14 |
10 12 13
|
rspcdva |
⊢ ( ( ( 𝜑 ∧ ( 𝐷 ∈ V ∧ 𝑍 ∈ V ) ) ∧ 𝑥 ∈ 𝐷 ) → ( 𝐴 𝑂 𝑌 ) = 𝑍 ) |
15 |
|
oveq2 |
⊢ ( 𝐵 = 𝑌 → ( 𝐴 𝑂 𝐵 ) = ( 𝐴 𝑂 𝑌 ) ) |
16 |
15
|
eqeq1d |
⊢ ( 𝐵 = 𝑌 → ( ( 𝐴 𝑂 𝐵 ) = 𝑍 ↔ ( 𝐴 𝑂 𝑌 ) = 𝑍 ) ) |
17 |
14 16
|
syl5ibrcom |
⊢ ( ( ( 𝜑 ∧ ( 𝐷 ∈ V ∧ 𝑍 ∈ V ) ) ∧ 𝑥 ∈ 𝐷 ) → ( 𝐵 = 𝑌 → ( 𝐴 𝑂 𝐵 ) = 𝑍 ) ) |
18 |
17
|
necon3d |
⊢ ( ( ( 𝜑 ∧ ( 𝐷 ∈ V ∧ 𝑍 ∈ V ) ) ∧ 𝑥 ∈ 𝐷 ) → ( ( 𝐴 𝑂 𝐵 ) ≠ 𝑍 → 𝐵 ≠ 𝑌 ) ) |
19 |
|
eldifsni |
⊢ ( ( 𝐴 𝑂 𝐵 ) ∈ ( V ∖ { 𝑍 } ) → ( 𝐴 𝑂 𝐵 ) ≠ 𝑍 ) |
20 |
18 19
|
impel |
⊢ ( ( ( ( 𝜑 ∧ ( 𝐷 ∈ V ∧ 𝑍 ∈ V ) ) ∧ 𝑥 ∈ 𝐷 ) ∧ ( 𝐴 𝑂 𝐵 ) ∈ ( V ∖ { 𝑍 } ) ) → 𝐵 ≠ 𝑌 ) |
21 |
|
eldifsn |
⊢ ( 𝐵 ∈ ( V ∖ { 𝑌 } ) ↔ ( 𝐵 ∈ V ∧ 𝐵 ≠ 𝑌 ) ) |
22 |
8 20 21
|
sylanbrc |
⊢ ( ( ( ( 𝜑 ∧ ( 𝐷 ∈ V ∧ 𝑍 ∈ V ) ) ∧ 𝑥 ∈ 𝐷 ) ∧ ( 𝐴 𝑂 𝐵 ) ∈ ( V ∖ { 𝑍 } ) ) → 𝐵 ∈ ( V ∖ { 𝑌 } ) ) |
23 |
22
|
ex |
⊢ ( ( ( 𝜑 ∧ ( 𝐷 ∈ V ∧ 𝑍 ∈ V ) ) ∧ 𝑥 ∈ 𝐷 ) → ( ( 𝐴 𝑂 𝐵 ) ∈ ( V ∖ { 𝑍 } ) → 𝐵 ∈ ( V ∖ { 𝑌 } ) ) ) |
24 |
23
|
ss2rabdv |
⊢ ( ( 𝜑 ∧ ( 𝐷 ∈ V ∧ 𝑍 ∈ V ) ) → { 𝑥 ∈ 𝐷 ∣ ( 𝐴 𝑂 𝐵 ) ∈ ( V ∖ { 𝑍 } ) } ⊆ { 𝑥 ∈ 𝐷 ∣ 𝐵 ∈ ( V ∖ { 𝑌 } ) } ) |
25 |
|
eqid |
⊢ ( 𝑥 ∈ 𝐷 ↦ ( 𝐴 𝑂 𝐵 ) ) = ( 𝑥 ∈ 𝐷 ↦ ( 𝐴 𝑂 𝐵 ) ) |
26 |
|
simprl |
⊢ ( ( 𝜑 ∧ ( 𝐷 ∈ V ∧ 𝑍 ∈ V ) ) → 𝐷 ∈ V ) |
27 |
|
simprr |
⊢ ( ( 𝜑 ∧ ( 𝐷 ∈ V ∧ 𝑍 ∈ V ) ) → 𝑍 ∈ V ) |
28 |
25 26 27
|
mptsuppdifd |
⊢ ( ( 𝜑 ∧ ( 𝐷 ∈ V ∧ 𝑍 ∈ V ) ) → ( ( 𝑥 ∈ 𝐷 ↦ ( 𝐴 𝑂 𝐵 ) ) supp 𝑍 ) = { 𝑥 ∈ 𝐷 ∣ ( 𝐴 𝑂 𝐵 ) ∈ ( V ∖ { 𝑍 } ) } ) |
29 |
|
eqid |
⊢ ( 𝑥 ∈ 𝐷 ↦ 𝐵 ) = ( 𝑥 ∈ 𝐷 ↦ 𝐵 ) |
30 |
5
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝐷 ∈ V ∧ 𝑍 ∈ V ) ) → 𝑌 ∈ 𝑊 ) |
31 |
29 26 30
|
mptsuppdifd |
⊢ ( ( 𝜑 ∧ ( 𝐷 ∈ V ∧ 𝑍 ∈ V ) ) → ( ( 𝑥 ∈ 𝐷 ↦ 𝐵 ) supp 𝑌 ) = { 𝑥 ∈ 𝐷 ∣ 𝐵 ∈ ( V ∖ { 𝑌 } ) } ) |
32 |
24 28 31
|
3sstr4d |
⊢ ( ( 𝜑 ∧ ( 𝐷 ∈ V ∧ 𝑍 ∈ V ) ) → ( ( 𝑥 ∈ 𝐷 ↦ ( 𝐴 𝑂 𝐵 ) ) supp 𝑍 ) ⊆ ( ( 𝑥 ∈ 𝐷 ↦ 𝐵 ) supp 𝑌 ) ) |
33 |
1
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝐷 ∈ V ∧ 𝑍 ∈ V ) ) → ( ( 𝑥 ∈ 𝐷 ↦ 𝐵 ) supp 𝑌 ) ⊆ 𝐿 ) |
34 |
32 33
|
sstrd |
⊢ ( ( 𝜑 ∧ ( 𝐷 ∈ V ∧ 𝑍 ∈ V ) ) → ( ( 𝑥 ∈ 𝐷 ↦ ( 𝐴 𝑂 𝐵 ) ) supp 𝑍 ) ⊆ 𝐿 ) |
35 |
|
mptexg |
⊢ ( 𝐷 ∈ V → ( 𝑥 ∈ 𝐷 ↦ ( 𝐴 𝑂 𝐵 ) ) ∈ V ) |
36 |
|
ovex |
⊢ ( 𝐴 𝑂 𝐵 ) ∈ V |
37 |
36
|
rgenw |
⊢ ∀ 𝑥 ∈ 𝐷 ( 𝐴 𝑂 𝐵 ) ∈ V |
38 |
|
dmmptg |
⊢ ( ∀ 𝑥 ∈ 𝐷 ( 𝐴 𝑂 𝐵 ) ∈ V → dom ( 𝑥 ∈ 𝐷 ↦ ( 𝐴 𝑂 𝐵 ) ) = 𝐷 ) |
39 |
37 38
|
ax-mp |
⊢ dom ( 𝑥 ∈ 𝐷 ↦ ( 𝐴 𝑂 𝐵 ) ) = 𝐷 |
40 |
|
dmexg |
⊢ ( ( 𝑥 ∈ 𝐷 ↦ ( 𝐴 𝑂 𝐵 ) ) ∈ V → dom ( 𝑥 ∈ 𝐷 ↦ ( 𝐴 𝑂 𝐵 ) ) ∈ V ) |
41 |
39 40
|
eqeltrrid |
⊢ ( ( 𝑥 ∈ 𝐷 ↦ ( 𝐴 𝑂 𝐵 ) ) ∈ V → 𝐷 ∈ V ) |
42 |
35 41
|
impbii |
⊢ ( 𝐷 ∈ V ↔ ( 𝑥 ∈ 𝐷 ↦ ( 𝐴 𝑂 𝐵 ) ) ∈ V ) |
43 |
42
|
anbi1i |
⊢ ( ( 𝐷 ∈ V ∧ 𝑍 ∈ V ) ↔ ( ( 𝑥 ∈ 𝐷 ↦ ( 𝐴 𝑂 𝐵 ) ) ∈ V ∧ 𝑍 ∈ V ) ) |
44 |
|
supp0prc |
⊢ ( ¬ ( ( 𝑥 ∈ 𝐷 ↦ ( 𝐴 𝑂 𝐵 ) ) ∈ V ∧ 𝑍 ∈ V ) → ( ( 𝑥 ∈ 𝐷 ↦ ( 𝐴 𝑂 𝐵 ) ) supp 𝑍 ) = ∅ ) |
45 |
43 44
|
sylnbi |
⊢ ( ¬ ( 𝐷 ∈ V ∧ 𝑍 ∈ V ) → ( ( 𝑥 ∈ 𝐷 ↦ ( 𝐴 𝑂 𝐵 ) ) supp 𝑍 ) = ∅ ) |
46 |
|
0ss |
⊢ ∅ ⊆ 𝐿 |
47 |
45 46
|
eqsstrdi |
⊢ ( ¬ ( 𝐷 ∈ V ∧ 𝑍 ∈ V ) → ( ( 𝑥 ∈ 𝐷 ↦ ( 𝐴 𝑂 𝐵 ) ) supp 𝑍 ) ⊆ 𝐿 ) |
48 |
47
|
adantl |
⊢ ( ( 𝜑 ∧ ¬ ( 𝐷 ∈ V ∧ 𝑍 ∈ V ) ) → ( ( 𝑥 ∈ 𝐷 ↦ ( 𝐴 𝑂 𝐵 ) ) supp 𝑍 ) ⊆ 𝐿 ) |
49 |
34 48
|
pm2.61dan |
⊢ ( 𝜑 → ( ( 𝑥 ∈ 𝐷 ↦ ( 𝐴 𝑂 𝐵 ) ) supp 𝑍 ) ⊆ 𝐿 ) |