Step |
Hyp |
Ref |
Expression |
1 |
|
suppssr.f |
⊢ ( 𝜑 → 𝐹 : 𝐴 ⟶ 𝐵 ) |
2 |
|
suppssr.n |
⊢ ( 𝜑 → ( 𝐹 supp 𝑍 ) ⊆ 𝑊 ) |
3 |
|
suppssr.a |
⊢ ( 𝜑 → 𝐴 ∈ 𝑉 ) |
4 |
|
suppssr.z |
⊢ ( 𝜑 → 𝑍 ∈ 𝑈 ) |
5 |
|
eldif |
⊢ ( 𝑋 ∈ ( 𝐴 ∖ 𝑊 ) ↔ ( 𝑋 ∈ 𝐴 ∧ ¬ 𝑋 ∈ 𝑊 ) ) |
6 |
|
fvex |
⊢ ( 𝐹 ‘ 𝑋 ) ∈ V |
7 |
|
eldifsn |
⊢ ( ( 𝐹 ‘ 𝑋 ) ∈ ( V ∖ { 𝑍 } ) ↔ ( ( 𝐹 ‘ 𝑋 ) ∈ V ∧ ( 𝐹 ‘ 𝑋 ) ≠ 𝑍 ) ) |
8 |
6 7
|
mpbiran |
⊢ ( ( 𝐹 ‘ 𝑋 ) ∈ ( V ∖ { 𝑍 } ) ↔ ( 𝐹 ‘ 𝑋 ) ≠ 𝑍 ) |
9 |
1
|
ffnd |
⊢ ( 𝜑 → 𝐹 Fn 𝐴 ) |
10 |
|
elsuppfn |
⊢ ( ( 𝐹 Fn 𝐴 ∧ 𝐴 ∈ 𝑉 ∧ 𝑍 ∈ 𝑈 ) → ( 𝑋 ∈ ( 𝐹 supp 𝑍 ) ↔ ( 𝑋 ∈ 𝐴 ∧ ( 𝐹 ‘ 𝑋 ) ≠ 𝑍 ) ) ) |
11 |
9 3 4 10
|
syl3anc |
⊢ ( 𝜑 → ( 𝑋 ∈ ( 𝐹 supp 𝑍 ) ↔ ( 𝑋 ∈ 𝐴 ∧ ( 𝐹 ‘ 𝑋 ) ≠ 𝑍 ) ) ) |
12 |
|
ibar |
⊢ ( ( 𝐹 ‘ 𝑋 ) ∈ V → ( ( 𝐹 ‘ 𝑋 ) ≠ 𝑍 ↔ ( ( 𝐹 ‘ 𝑋 ) ∈ V ∧ ( 𝐹 ‘ 𝑋 ) ≠ 𝑍 ) ) ) |
13 |
6 12
|
mp1i |
⊢ ( ( 𝜑 ∧ 𝑋 ∈ 𝐴 ) → ( ( 𝐹 ‘ 𝑋 ) ≠ 𝑍 ↔ ( ( 𝐹 ‘ 𝑋 ) ∈ V ∧ ( 𝐹 ‘ 𝑋 ) ≠ 𝑍 ) ) ) |
14 |
13 7
|
bitr4di |
⊢ ( ( 𝜑 ∧ 𝑋 ∈ 𝐴 ) → ( ( 𝐹 ‘ 𝑋 ) ≠ 𝑍 ↔ ( 𝐹 ‘ 𝑋 ) ∈ ( V ∖ { 𝑍 } ) ) ) |
15 |
14
|
pm5.32da |
⊢ ( 𝜑 → ( ( 𝑋 ∈ 𝐴 ∧ ( 𝐹 ‘ 𝑋 ) ≠ 𝑍 ) ↔ ( 𝑋 ∈ 𝐴 ∧ ( 𝐹 ‘ 𝑋 ) ∈ ( V ∖ { 𝑍 } ) ) ) ) |
16 |
11 15
|
bitrd |
⊢ ( 𝜑 → ( 𝑋 ∈ ( 𝐹 supp 𝑍 ) ↔ ( 𝑋 ∈ 𝐴 ∧ ( 𝐹 ‘ 𝑋 ) ∈ ( V ∖ { 𝑍 } ) ) ) ) |
17 |
2
|
sseld |
⊢ ( 𝜑 → ( 𝑋 ∈ ( 𝐹 supp 𝑍 ) → 𝑋 ∈ 𝑊 ) ) |
18 |
16 17
|
sylbird |
⊢ ( 𝜑 → ( ( 𝑋 ∈ 𝐴 ∧ ( 𝐹 ‘ 𝑋 ) ∈ ( V ∖ { 𝑍 } ) ) → 𝑋 ∈ 𝑊 ) ) |
19 |
18
|
expdimp |
⊢ ( ( 𝜑 ∧ 𝑋 ∈ 𝐴 ) → ( ( 𝐹 ‘ 𝑋 ) ∈ ( V ∖ { 𝑍 } ) → 𝑋 ∈ 𝑊 ) ) |
20 |
8 19
|
syl5bir |
⊢ ( ( 𝜑 ∧ 𝑋 ∈ 𝐴 ) → ( ( 𝐹 ‘ 𝑋 ) ≠ 𝑍 → 𝑋 ∈ 𝑊 ) ) |
21 |
20
|
necon1bd |
⊢ ( ( 𝜑 ∧ 𝑋 ∈ 𝐴 ) → ( ¬ 𝑋 ∈ 𝑊 → ( 𝐹 ‘ 𝑋 ) = 𝑍 ) ) |
22 |
21
|
impr |
⊢ ( ( 𝜑 ∧ ( 𝑋 ∈ 𝐴 ∧ ¬ 𝑋 ∈ 𝑊 ) ) → ( 𝐹 ‘ 𝑋 ) = 𝑍 ) |
23 |
5 22
|
sylan2b |
⊢ ( ( 𝜑 ∧ 𝑋 ∈ ( 𝐴 ∖ 𝑊 ) ) → ( 𝐹 ‘ 𝑋 ) = 𝑍 ) |