Metamath Proof Explorer


Theorem suppsssn

Description: Show that the support of a function is a subset of a singleton. (Contributed by AV, 21-Jul-2019)

Ref Expression
Hypotheses suppsssn.n ( ( 𝜑𝑘𝐴𝑘𝑊 ) → 𝐵 = 𝑍 )
suppsssn.a ( 𝜑𝐴𝑉 )
Assertion suppsssn ( 𝜑 → ( ( 𝑘𝐴𝐵 ) supp 𝑍 ) ⊆ { 𝑊 } )

Proof

Step Hyp Ref Expression
1 suppsssn.n ( ( 𝜑𝑘𝐴𝑘𝑊 ) → 𝐵 = 𝑍 )
2 suppsssn.a ( 𝜑𝐴𝑉 )
3 eldifsn ( 𝑘 ∈ ( 𝐴 ∖ { 𝑊 } ) ↔ ( 𝑘𝐴𝑘𝑊 ) )
4 1 3expb ( ( 𝜑 ∧ ( 𝑘𝐴𝑘𝑊 ) ) → 𝐵 = 𝑍 )
5 3 4 sylan2b ( ( 𝜑𝑘 ∈ ( 𝐴 ∖ { 𝑊 } ) ) → 𝐵 = 𝑍 )
6 5 2 suppss2 ( 𝜑 → ( ( 𝑘𝐴𝐵 ) supp 𝑍 ) ⊆ { 𝑊 } )