Description: Show that the support of a function is a subset of a singleton. (Contributed by AV, 21-Jul-2019)
Ref | Expression | ||
---|---|---|---|
Hypotheses | suppsssn.n | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝐴 ∧ 𝑘 ≠ 𝑊 ) → 𝐵 = 𝑍 ) | |
suppsssn.a | ⊢ ( 𝜑 → 𝐴 ∈ 𝑉 ) | ||
Assertion | suppsssn | ⊢ ( 𝜑 → ( ( 𝑘 ∈ 𝐴 ↦ 𝐵 ) supp 𝑍 ) ⊆ { 𝑊 } ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | suppsssn.n | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝐴 ∧ 𝑘 ≠ 𝑊 ) → 𝐵 = 𝑍 ) | |
2 | suppsssn.a | ⊢ ( 𝜑 → 𝐴 ∈ 𝑉 ) | |
3 | eldifsn | ⊢ ( 𝑘 ∈ ( 𝐴 ∖ { 𝑊 } ) ↔ ( 𝑘 ∈ 𝐴 ∧ 𝑘 ≠ 𝑊 ) ) | |
4 | 1 | 3expb | ⊢ ( ( 𝜑 ∧ ( 𝑘 ∈ 𝐴 ∧ 𝑘 ≠ 𝑊 ) ) → 𝐵 = 𝑍 ) |
5 | 3 4 | sylan2b | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 𝐴 ∖ { 𝑊 } ) ) → 𝐵 = 𝑍 ) |
6 | 5 2 | suppss2 | ⊢ ( 𝜑 → ( ( 𝑘 ∈ 𝐴 ↦ 𝐵 ) supp 𝑍 ) ⊆ { 𝑊 } ) |