Step |
Hyp |
Ref |
Expression |
1 |
|
suppun.g |
⊢ ( 𝜑 → 𝐺 ∈ 𝑉 ) |
2 |
|
ssun1 |
⊢ ( ◡ 𝐹 “ ( V ∖ { 𝑍 } ) ) ⊆ ( ( ◡ 𝐹 “ ( V ∖ { 𝑍 } ) ) ∪ ( ◡ 𝐺 “ ( V ∖ { 𝑍 } ) ) ) |
3 |
|
cnvun |
⊢ ◡ ( 𝐹 ∪ 𝐺 ) = ( ◡ 𝐹 ∪ ◡ 𝐺 ) |
4 |
3
|
imaeq1i |
⊢ ( ◡ ( 𝐹 ∪ 𝐺 ) “ ( V ∖ { 𝑍 } ) ) = ( ( ◡ 𝐹 ∪ ◡ 𝐺 ) “ ( V ∖ { 𝑍 } ) ) |
5 |
|
imaundir |
⊢ ( ( ◡ 𝐹 ∪ ◡ 𝐺 ) “ ( V ∖ { 𝑍 } ) ) = ( ( ◡ 𝐹 “ ( V ∖ { 𝑍 } ) ) ∪ ( ◡ 𝐺 “ ( V ∖ { 𝑍 } ) ) ) |
6 |
4 5
|
eqtri |
⊢ ( ◡ ( 𝐹 ∪ 𝐺 ) “ ( V ∖ { 𝑍 } ) ) = ( ( ◡ 𝐹 “ ( V ∖ { 𝑍 } ) ) ∪ ( ◡ 𝐺 “ ( V ∖ { 𝑍 } ) ) ) |
7 |
2 6
|
sseqtrri |
⊢ ( ◡ 𝐹 “ ( V ∖ { 𝑍 } ) ) ⊆ ( ◡ ( 𝐹 ∪ 𝐺 ) “ ( V ∖ { 𝑍 } ) ) |
8 |
7
|
a1i |
⊢ ( ( ( 𝐹 ∈ V ∧ 𝑍 ∈ V ) ∧ 𝜑 ) → ( ◡ 𝐹 “ ( V ∖ { 𝑍 } ) ) ⊆ ( ◡ ( 𝐹 ∪ 𝐺 ) “ ( V ∖ { 𝑍 } ) ) ) |
9 |
|
suppimacnv |
⊢ ( ( 𝐹 ∈ V ∧ 𝑍 ∈ V ) → ( 𝐹 supp 𝑍 ) = ( ◡ 𝐹 “ ( V ∖ { 𝑍 } ) ) ) |
10 |
9
|
adantr |
⊢ ( ( ( 𝐹 ∈ V ∧ 𝑍 ∈ V ) ∧ 𝜑 ) → ( 𝐹 supp 𝑍 ) = ( ◡ 𝐹 “ ( V ∖ { 𝑍 } ) ) ) |
11 |
|
unexg |
⊢ ( ( 𝐹 ∈ V ∧ 𝐺 ∈ 𝑉 ) → ( 𝐹 ∪ 𝐺 ) ∈ V ) |
12 |
11
|
adantlr |
⊢ ( ( ( 𝐹 ∈ V ∧ 𝑍 ∈ V ) ∧ 𝐺 ∈ 𝑉 ) → ( 𝐹 ∪ 𝐺 ) ∈ V ) |
13 |
1 12
|
sylan2 |
⊢ ( ( ( 𝐹 ∈ V ∧ 𝑍 ∈ V ) ∧ 𝜑 ) → ( 𝐹 ∪ 𝐺 ) ∈ V ) |
14 |
|
simplr |
⊢ ( ( ( 𝐹 ∈ V ∧ 𝑍 ∈ V ) ∧ 𝜑 ) → 𝑍 ∈ V ) |
15 |
|
suppimacnv |
⊢ ( ( ( 𝐹 ∪ 𝐺 ) ∈ V ∧ 𝑍 ∈ V ) → ( ( 𝐹 ∪ 𝐺 ) supp 𝑍 ) = ( ◡ ( 𝐹 ∪ 𝐺 ) “ ( V ∖ { 𝑍 } ) ) ) |
16 |
13 14 15
|
syl2anc |
⊢ ( ( ( 𝐹 ∈ V ∧ 𝑍 ∈ V ) ∧ 𝜑 ) → ( ( 𝐹 ∪ 𝐺 ) supp 𝑍 ) = ( ◡ ( 𝐹 ∪ 𝐺 ) “ ( V ∖ { 𝑍 } ) ) ) |
17 |
8 10 16
|
3sstr4d |
⊢ ( ( ( 𝐹 ∈ V ∧ 𝑍 ∈ V ) ∧ 𝜑 ) → ( 𝐹 supp 𝑍 ) ⊆ ( ( 𝐹 ∪ 𝐺 ) supp 𝑍 ) ) |
18 |
17
|
ex |
⊢ ( ( 𝐹 ∈ V ∧ 𝑍 ∈ V ) → ( 𝜑 → ( 𝐹 supp 𝑍 ) ⊆ ( ( 𝐹 ∪ 𝐺 ) supp 𝑍 ) ) ) |
19 |
|
supp0prc |
⊢ ( ¬ ( 𝐹 ∈ V ∧ 𝑍 ∈ V ) → ( 𝐹 supp 𝑍 ) = ∅ ) |
20 |
|
0ss |
⊢ ∅ ⊆ ( ( 𝐹 ∪ 𝐺 ) supp 𝑍 ) |
21 |
19 20
|
eqsstrdi |
⊢ ( ¬ ( 𝐹 ∈ V ∧ 𝑍 ∈ V ) → ( 𝐹 supp 𝑍 ) ⊆ ( ( 𝐹 ∪ 𝐺 ) supp 𝑍 ) ) |
22 |
21
|
a1d |
⊢ ( ¬ ( 𝐹 ∈ V ∧ 𝑍 ∈ V ) → ( 𝜑 → ( 𝐹 supp 𝑍 ) ⊆ ( ( 𝐹 ∪ 𝐺 ) supp 𝑍 ) ) ) |
23 |
18 22
|
pm2.61i |
⊢ ( 𝜑 → ( 𝐹 supp 𝑍 ) ⊆ ( ( 𝐹 ∪ 𝐺 ) supp 𝑍 ) ) |