Step |
Hyp |
Ref |
Expression |
1 |
|
fnfun |
⊢ ( 𝐹 Fn 𝑋 → Fun 𝐹 ) |
2 |
1
|
3ad2ant1 |
⊢ ( ( 𝐹 Fn 𝑋 ∧ 𝑋 ∈ 𝑉 ∧ 𝑍 ∈ 𝑊 ) → Fun 𝐹 ) |
3 |
|
fnex |
⊢ ( ( 𝐹 Fn 𝑋 ∧ 𝑋 ∈ 𝑉 ) → 𝐹 ∈ V ) |
4 |
3
|
3adant3 |
⊢ ( ( 𝐹 Fn 𝑋 ∧ 𝑋 ∈ 𝑉 ∧ 𝑍 ∈ 𝑊 ) → 𝐹 ∈ V ) |
5 |
|
simp3 |
⊢ ( ( 𝐹 Fn 𝑋 ∧ 𝑋 ∈ 𝑉 ∧ 𝑍 ∈ 𝑊 ) → 𝑍 ∈ 𝑊 ) |
6 |
|
suppval1 |
⊢ ( ( Fun 𝐹 ∧ 𝐹 ∈ V ∧ 𝑍 ∈ 𝑊 ) → ( 𝐹 supp 𝑍 ) = { 𝑖 ∈ dom 𝐹 ∣ ( 𝐹 ‘ 𝑖 ) ≠ 𝑍 } ) |
7 |
2 4 5 6
|
syl3anc |
⊢ ( ( 𝐹 Fn 𝑋 ∧ 𝑋 ∈ 𝑉 ∧ 𝑍 ∈ 𝑊 ) → ( 𝐹 supp 𝑍 ) = { 𝑖 ∈ dom 𝐹 ∣ ( 𝐹 ‘ 𝑖 ) ≠ 𝑍 } ) |
8 |
|
fndm |
⊢ ( 𝐹 Fn 𝑋 → dom 𝐹 = 𝑋 ) |
9 |
8
|
3ad2ant1 |
⊢ ( ( 𝐹 Fn 𝑋 ∧ 𝑋 ∈ 𝑉 ∧ 𝑍 ∈ 𝑊 ) → dom 𝐹 = 𝑋 ) |
10 |
9
|
rabeqdv |
⊢ ( ( 𝐹 Fn 𝑋 ∧ 𝑋 ∈ 𝑉 ∧ 𝑍 ∈ 𝑊 ) → { 𝑖 ∈ dom 𝐹 ∣ ( 𝐹 ‘ 𝑖 ) ≠ 𝑍 } = { 𝑖 ∈ 𝑋 ∣ ( 𝐹 ‘ 𝑖 ) ≠ 𝑍 } ) |
11 |
7 10
|
eqtrd |
⊢ ( ( 𝐹 Fn 𝑋 ∧ 𝑋 ∈ 𝑉 ∧ 𝑍 ∈ 𝑊 ) → ( 𝐹 supp 𝑍 ) = { 𝑖 ∈ 𝑋 ∣ ( 𝐹 ‘ 𝑖 ) ≠ 𝑍 } ) |