| Step | 
						Hyp | 
						Ref | 
						Expression | 
					
						
							| 1 | 
							
								
							 | 
							fnfun | 
							⊢ ( 𝐹  Fn  𝑋  →  Fun  𝐹 )  | 
						
						
							| 2 | 
							
								
							 | 
							suppval1 | 
							⊢ ( ( Fun  𝐹  ∧  𝐹  ∈  𝑉  ∧  𝑍  ∈  𝑊 )  →  ( 𝐹  supp  𝑍 )  =  { 𝑖  ∈  dom  𝐹  ∣  ( 𝐹 ‘ 𝑖 )  ≠  𝑍 } )  | 
						
						
							| 3 | 
							
								1 2
							 | 
							syl3an1 | 
							⊢ ( ( 𝐹  Fn  𝑋  ∧  𝐹  ∈  𝑉  ∧  𝑍  ∈  𝑊 )  →  ( 𝐹  supp  𝑍 )  =  { 𝑖  ∈  dom  𝐹  ∣  ( 𝐹 ‘ 𝑖 )  ≠  𝑍 } )  | 
						
						
							| 4 | 
							
								
							 | 
							fndm | 
							⊢ ( 𝐹  Fn  𝑋  →  dom  𝐹  =  𝑋 )  | 
						
						
							| 5 | 
							
								4
							 | 
							3ad2ant1 | 
							⊢ ( ( 𝐹  Fn  𝑋  ∧  𝐹  ∈  𝑉  ∧  𝑍  ∈  𝑊 )  →  dom  𝐹  =  𝑋 )  | 
						
						
							| 6 | 
							
								5
							 | 
							rabeqdv | 
							⊢ ( ( 𝐹  Fn  𝑋  ∧  𝐹  ∈  𝑉  ∧  𝑍  ∈  𝑊 )  →  { 𝑖  ∈  dom  𝐹  ∣  ( 𝐹 ‘ 𝑖 )  ≠  𝑍 }  =  { 𝑖  ∈  𝑋  ∣  ( 𝐹 ‘ 𝑖 )  ≠  𝑍 } )  | 
						
						
							| 7 | 
							
								3 6
							 | 
							eqtrd | 
							⊢ ( ( 𝐹  Fn  𝑋  ∧  𝐹  ∈  𝑉  ∧  𝑍  ∈  𝑊 )  →  ( 𝐹  supp  𝑍 )  =  { 𝑖  ∈  𝑋  ∣  ( 𝐹 ‘ 𝑖 )  ≠  𝑍 } )  |