Metamath Proof Explorer


Theorem suprclrnmpt

Description: Closure of the indexed supremum of a nonempty bounded set of reals. Range of a function in maps-to notation can be used, to express an indexed supremum. (Contributed by Glauco Siliprandi, 23-Oct-2021)

Ref Expression
Hypotheses suprclrnmpt.x 𝑥 𝜑
suprclrnmpt.n ( 𝜑𝐴 ≠ ∅ )
suprclrnmpt.b ( ( 𝜑𝑥𝐴 ) → 𝐵 ∈ ℝ )
suprclrnmpt.y ( 𝜑 → ∃ 𝑦 ∈ ℝ ∀ 𝑥𝐴 𝐵𝑦 )
Assertion suprclrnmpt ( 𝜑 → sup ( ran ( 𝑥𝐴𝐵 ) , ℝ , < ) ∈ ℝ )

Proof

Step Hyp Ref Expression
1 suprclrnmpt.x 𝑥 𝜑
2 suprclrnmpt.n ( 𝜑𝐴 ≠ ∅ )
3 suprclrnmpt.b ( ( 𝜑𝑥𝐴 ) → 𝐵 ∈ ℝ )
4 suprclrnmpt.y ( 𝜑 → ∃ 𝑦 ∈ ℝ ∀ 𝑥𝐴 𝐵𝑦 )
5 eqid ( 𝑥𝐴𝐵 ) = ( 𝑥𝐴𝐵 )
6 1 5 3 rnmptssd ( 𝜑 → ran ( 𝑥𝐴𝐵 ) ⊆ ℝ )
7 1 3 5 2 rnmptn0 ( 𝜑 → ran ( 𝑥𝐴𝐵 ) ≠ ∅ )
8 1 4 rnmptbdd ( 𝜑 → ∃ 𝑦 ∈ ℝ ∀ 𝑧 ∈ ran ( 𝑥𝐴𝐵 ) 𝑧𝑦 )
9 6 7 8 suprcld ( 𝜑 → sup ( ran ( 𝑥𝐴𝐵 ) , ℝ , < ) ∈ ℝ )