Metamath Proof Explorer


Theorem suprfinzcl

Description: The supremum of a nonempty finite set of integers is a member of the set. (Contributed by AV, 1-Oct-2019)

Ref Expression
Assertion suprfinzcl ( ( 𝐴 ⊆ ℤ ∧ 𝐴 ≠ ∅ ∧ 𝐴 ∈ Fin ) → sup ( 𝐴 , ℝ , < ) ∈ 𝐴 )

Proof

Step Hyp Ref Expression
1 zssre ℤ ⊆ ℝ
2 ltso < Or ℝ
3 soss ( ℤ ⊆ ℝ → ( < Or ℝ → < Or ℤ ) )
4 1 2 3 mp2 < Or ℤ
5 4 a1i ( ( 𝐴 ⊆ ℤ ∧ 𝐴 ≠ ∅ ∧ 𝐴 ∈ Fin ) → < Or ℤ )
6 simp3 ( ( 𝐴 ⊆ ℤ ∧ 𝐴 ≠ ∅ ∧ 𝐴 ∈ Fin ) → 𝐴 ∈ Fin )
7 simp2 ( ( 𝐴 ⊆ ℤ ∧ 𝐴 ≠ ∅ ∧ 𝐴 ∈ Fin ) → 𝐴 ≠ ∅ )
8 simp1 ( ( 𝐴 ⊆ ℤ ∧ 𝐴 ≠ ∅ ∧ 𝐴 ∈ Fin ) → 𝐴 ⊆ ℤ )
9 fisup2g ( ( < Or ℤ ∧ ( 𝐴 ∈ Fin ∧ 𝐴 ≠ ∅ ∧ 𝐴 ⊆ ℤ ) ) → ∃ 𝑟𝐴 ( ∀ 𝑎𝐴 ¬ 𝑟 < 𝑎 ∧ ∀ 𝑎 ∈ ℤ ( 𝑎 < 𝑟 → ∃ 𝑏𝐴 𝑎 < 𝑏 ) ) )
10 5 6 7 8 9 syl13anc ( ( 𝐴 ⊆ ℤ ∧ 𝐴 ≠ ∅ ∧ 𝐴 ∈ Fin ) → ∃ 𝑟𝐴 ( ∀ 𝑎𝐴 ¬ 𝑟 < 𝑎 ∧ ∀ 𝑎 ∈ ℤ ( 𝑎 < 𝑟 → ∃ 𝑏𝐴 𝑎 < 𝑏 ) ) )
11 id ( 𝐴 ⊆ ℤ → 𝐴 ⊆ ℤ )
12 11 1 sstrdi ( 𝐴 ⊆ ℤ → 𝐴 ⊆ ℝ )
13 12 3ad2ant1 ( ( 𝐴 ⊆ ℤ ∧ 𝐴 ≠ ∅ ∧ 𝐴 ∈ Fin ) → 𝐴 ⊆ ℝ )
14 ssrexv ( 𝐴 ⊆ ℝ → ( ∃ 𝑟𝐴 ( ∀ 𝑎𝐴 ¬ 𝑟 < 𝑎 ∧ ∀ 𝑎 ∈ ℤ ( 𝑎 < 𝑟 → ∃ 𝑏𝐴 𝑎 < 𝑏 ) ) → ∃ 𝑟 ∈ ℝ ( ∀ 𝑎𝐴 ¬ 𝑟 < 𝑎 ∧ ∀ 𝑎 ∈ ℤ ( 𝑎 < 𝑟 → ∃ 𝑏𝐴 𝑎 < 𝑏 ) ) ) )
15 13 14 syl ( ( 𝐴 ⊆ ℤ ∧ 𝐴 ≠ ∅ ∧ 𝐴 ∈ Fin ) → ( ∃ 𝑟𝐴 ( ∀ 𝑎𝐴 ¬ 𝑟 < 𝑎 ∧ ∀ 𝑎 ∈ ℤ ( 𝑎 < 𝑟 → ∃ 𝑏𝐴 𝑎 < 𝑏 ) ) → ∃ 𝑟 ∈ ℝ ( ∀ 𝑎𝐴 ¬ 𝑟 < 𝑎 ∧ ∀ 𝑎 ∈ ℤ ( 𝑎 < 𝑟 → ∃ 𝑏𝐴 𝑎 < 𝑏 ) ) ) )
16 ssel2 ( ( 𝐴 ⊆ ℤ ∧ 𝑎𝐴 ) → 𝑎 ∈ ℤ )
17 16 zred ( ( 𝐴 ⊆ ℤ ∧ 𝑎𝐴 ) → 𝑎 ∈ ℝ )
18 17 ex ( 𝐴 ⊆ ℤ → ( 𝑎𝐴𝑎 ∈ ℝ ) )
19 18 3ad2ant1 ( ( 𝐴 ⊆ ℤ ∧ 𝐴 ≠ ∅ ∧ 𝐴 ∈ Fin ) → ( 𝑎𝐴𝑎 ∈ ℝ ) )
20 19 adantr ( ( ( 𝐴 ⊆ ℤ ∧ 𝐴 ≠ ∅ ∧ 𝐴 ∈ Fin ) ∧ 𝑟 ∈ ℝ ) → ( 𝑎𝐴𝑎 ∈ ℝ ) )
21 20 imp ( ( ( ( 𝐴 ⊆ ℤ ∧ 𝐴 ≠ ∅ ∧ 𝐴 ∈ Fin ) ∧ 𝑟 ∈ ℝ ) ∧ 𝑎𝐴 ) → 𝑎 ∈ ℝ )
22 simplr ( ( ( ( 𝐴 ⊆ ℤ ∧ 𝐴 ≠ ∅ ∧ 𝐴 ∈ Fin ) ∧ 𝑟 ∈ ℝ ) ∧ 𝑎𝐴 ) → 𝑟 ∈ ℝ )
23 21 22 lenltd ( ( ( ( 𝐴 ⊆ ℤ ∧ 𝐴 ≠ ∅ ∧ 𝐴 ∈ Fin ) ∧ 𝑟 ∈ ℝ ) ∧ 𝑎𝐴 ) → ( 𝑎𝑟 ↔ ¬ 𝑟 < 𝑎 ) )
24 23 bicomd ( ( ( ( 𝐴 ⊆ ℤ ∧ 𝐴 ≠ ∅ ∧ 𝐴 ∈ Fin ) ∧ 𝑟 ∈ ℝ ) ∧ 𝑎𝐴 ) → ( ¬ 𝑟 < 𝑎𝑎𝑟 ) )
25 24 ralbidva ( ( ( 𝐴 ⊆ ℤ ∧ 𝐴 ≠ ∅ ∧ 𝐴 ∈ Fin ) ∧ 𝑟 ∈ ℝ ) → ( ∀ 𝑎𝐴 ¬ 𝑟 < 𝑎 ↔ ∀ 𝑎𝐴 𝑎𝑟 ) )
26 25 biimpd ( ( ( 𝐴 ⊆ ℤ ∧ 𝐴 ≠ ∅ ∧ 𝐴 ∈ Fin ) ∧ 𝑟 ∈ ℝ ) → ( ∀ 𝑎𝐴 ¬ 𝑟 < 𝑎 → ∀ 𝑎𝐴 𝑎𝑟 ) )
27 26 adantrd ( ( ( 𝐴 ⊆ ℤ ∧ 𝐴 ≠ ∅ ∧ 𝐴 ∈ Fin ) ∧ 𝑟 ∈ ℝ ) → ( ( ∀ 𝑎𝐴 ¬ 𝑟 < 𝑎 ∧ ∀ 𝑎 ∈ ℤ ( 𝑎 < 𝑟 → ∃ 𝑏𝐴 𝑎 < 𝑏 ) ) → ∀ 𝑎𝐴 𝑎𝑟 ) )
28 27 reximdva ( ( 𝐴 ⊆ ℤ ∧ 𝐴 ≠ ∅ ∧ 𝐴 ∈ Fin ) → ( ∃ 𝑟 ∈ ℝ ( ∀ 𝑎𝐴 ¬ 𝑟 < 𝑎 ∧ ∀ 𝑎 ∈ ℤ ( 𝑎 < 𝑟 → ∃ 𝑏𝐴 𝑎 < 𝑏 ) ) → ∃ 𝑟 ∈ ℝ ∀ 𝑎𝐴 𝑎𝑟 ) )
29 15 28 syld ( ( 𝐴 ⊆ ℤ ∧ 𝐴 ≠ ∅ ∧ 𝐴 ∈ Fin ) → ( ∃ 𝑟𝐴 ( ∀ 𝑎𝐴 ¬ 𝑟 < 𝑎 ∧ ∀ 𝑎 ∈ ℤ ( 𝑎 < 𝑟 → ∃ 𝑏𝐴 𝑎 < 𝑏 ) ) → ∃ 𝑟 ∈ ℝ ∀ 𝑎𝐴 𝑎𝑟 ) )
30 10 29 mpd ( ( 𝐴 ⊆ ℤ ∧ 𝐴 ≠ ∅ ∧ 𝐴 ∈ Fin ) → ∃ 𝑟 ∈ ℝ ∀ 𝑎𝐴 𝑎𝑟 )
31 suprzcl ( ( 𝐴 ⊆ ℤ ∧ 𝐴 ≠ ∅ ∧ ∃ 𝑟 ∈ ℝ ∀ 𝑎𝐴 𝑎𝑟 ) → sup ( 𝐴 , ℝ , < ) ∈ 𝐴 )
32 30 31 syld3an3 ( ( 𝐴 ⊆ ℤ ∧ 𝐴 ≠ ∅ ∧ 𝐴 ∈ Fin ) → sup ( 𝐴 , ℝ , < ) ∈ 𝐴 )