Step |
Hyp |
Ref |
Expression |
1 |
|
zssre |
⊢ ℤ ⊆ ℝ |
2 |
|
ltso |
⊢ < Or ℝ |
3 |
|
soss |
⊢ ( ℤ ⊆ ℝ → ( < Or ℝ → < Or ℤ ) ) |
4 |
1 2 3
|
mp2 |
⊢ < Or ℤ |
5 |
4
|
a1i |
⊢ ( ( 𝐴 ⊆ ℤ ∧ 𝐴 ≠ ∅ ∧ 𝐴 ∈ Fin ) → < Or ℤ ) |
6 |
|
simp3 |
⊢ ( ( 𝐴 ⊆ ℤ ∧ 𝐴 ≠ ∅ ∧ 𝐴 ∈ Fin ) → 𝐴 ∈ Fin ) |
7 |
|
simp2 |
⊢ ( ( 𝐴 ⊆ ℤ ∧ 𝐴 ≠ ∅ ∧ 𝐴 ∈ Fin ) → 𝐴 ≠ ∅ ) |
8 |
|
simp1 |
⊢ ( ( 𝐴 ⊆ ℤ ∧ 𝐴 ≠ ∅ ∧ 𝐴 ∈ Fin ) → 𝐴 ⊆ ℤ ) |
9 |
|
fisup2g |
⊢ ( ( < Or ℤ ∧ ( 𝐴 ∈ Fin ∧ 𝐴 ≠ ∅ ∧ 𝐴 ⊆ ℤ ) ) → ∃ 𝑟 ∈ 𝐴 ( ∀ 𝑎 ∈ 𝐴 ¬ 𝑟 < 𝑎 ∧ ∀ 𝑎 ∈ ℤ ( 𝑎 < 𝑟 → ∃ 𝑏 ∈ 𝐴 𝑎 < 𝑏 ) ) ) |
10 |
5 6 7 8 9
|
syl13anc |
⊢ ( ( 𝐴 ⊆ ℤ ∧ 𝐴 ≠ ∅ ∧ 𝐴 ∈ Fin ) → ∃ 𝑟 ∈ 𝐴 ( ∀ 𝑎 ∈ 𝐴 ¬ 𝑟 < 𝑎 ∧ ∀ 𝑎 ∈ ℤ ( 𝑎 < 𝑟 → ∃ 𝑏 ∈ 𝐴 𝑎 < 𝑏 ) ) ) |
11 |
|
id |
⊢ ( 𝐴 ⊆ ℤ → 𝐴 ⊆ ℤ ) |
12 |
11 1
|
sstrdi |
⊢ ( 𝐴 ⊆ ℤ → 𝐴 ⊆ ℝ ) |
13 |
12
|
3ad2ant1 |
⊢ ( ( 𝐴 ⊆ ℤ ∧ 𝐴 ≠ ∅ ∧ 𝐴 ∈ Fin ) → 𝐴 ⊆ ℝ ) |
14 |
|
ssrexv |
⊢ ( 𝐴 ⊆ ℝ → ( ∃ 𝑟 ∈ 𝐴 ( ∀ 𝑎 ∈ 𝐴 ¬ 𝑟 < 𝑎 ∧ ∀ 𝑎 ∈ ℤ ( 𝑎 < 𝑟 → ∃ 𝑏 ∈ 𝐴 𝑎 < 𝑏 ) ) → ∃ 𝑟 ∈ ℝ ( ∀ 𝑎 ∈ 𝐴 ¬ 𝑟 < 𝑎 ∧ ∀ 𝑎 ∈ ℤ ( 𝑎 < 𝑟 → ∃ 𝑏 ∈ 𝐴 𝑎 < 𝑏 ) ) ) ) |
15 |
13 14
|
syl |
⊢ ( ( 𝐴 ⊆ ℤ ∧ 𝐴 ≠ ∅ ∧ 𝐴 ∈ Fin ) → ( ∃ 𝑟 ∈ 𝐴 ( ∀ 𝑎 ∈ 𝐴 ¬ 𝑟 < 𝑎 ∧ ∀ 𝑎 ∈ ℤ ( 𝑎 < 𝑟 → ∃ 𝑏 ∈ 𝐴 𝑎 < 𝑏 ) ) → ∃ 𝑟 ∈ ℝ ( ∀ 𝑎 ∈ 𝐴 ¬ 𝑟 < 𝑎 ∧ ∀ 𝑎 ∈ ℤ ( 𝑎 < 𝑟 → ∃ 𝑏 ∈ 𝐴 𝑎 < 𝑏 ) ) ) ) |
16 |
|
ssel2 |
⊢ ( ( 𝐴 ⊆ ℤ ∧ 𝑎 ∈ 𝐴 ) → 𝑎 ∈ ℤ ) |
17 |
16
|
zred |
⊢ ( ( 𝐴 ⊆ ℤ ∧ 𝑎 ∈ 𝐴 ) → 𝑎 ∈ ℝ ) |
18 |
17
|
ex |
⊢ ( 𝐴 ⊆ ℤ → ( 𝑎 ∈ 𝐴 → 𝑎 ∈ ℝ ) ) |
19 |
18
|
3ad2ant1 |
⊢ ( ( 𝐴 ⊆ ℤ ∧ 𝐴 ≠ ∅ ∧ 𝐴 ∈ Fin ) → ( 𝑎 ∈ 𝐴 → 𝑎 ∈ ℝ ) ) |
20 |
19
|
adantr |
⊢ ( ( ( 𝐴 ⊆ ℤ ∧ 𝐴 ≠ ∅ ∧ 𝐴 ∈ Fin ) ∧ 𝑟 ∈ ℝ ) → ( 𝑎 ∈ 𝐴 → 𝑎 ∈ ℝ ) ) |
21 |
20
|
imp |
⊢ ( ( ( ( 𝐴 ⊆ ℤ ∧ 𝐴 ≠ ∅ ∧ 𝐴 ∈ Fin ) ∧ 𝑟 ∈ ℝ ) ∧ 𝑎 ∈ 𝐴 ) → 𝑎 ∈ ℝ ) |
22 |
|
simplr |
⊢ ( ( ( ( 𝐴 ⊆ ℤ ∧ 𝐴 ≠ ∅ ∧ 𝐴 ∈ Fin ) ∧ 𝑟 ∈ ℝ ) ∧ 𝑎 ∈ 𝐴 ) → 𝑟 ∈ ℝ ) |
23 |
21 22
|
lenltd |
⊢ ( ( ( ( 𝐴 ⊆ ℤ ∧ 𝐴 ≠ ∅ ∧ 𝐴 ∈ Fin ) ∧ 𝑟 ∈ ℝ ) ∧ 𝑎 ∈ 𝐴 ) → ( 𝑎 ≤ 𝑟 ↔ ¬ 𝑟 < 𝑎 ) ) |
24 |
23
|
bicomd |
⊢ ( ( ( ( 𝐴 ⊆ ℤ ∧ 𝐴 ≠ ∅ ∧ 𝐴 ∈ Fin ) ∧ 𝑟 ∈ ℝ ) ∧ 𝑎 ∈ 𝐴 ) → ( ¬ 𝑟 < 𝑎 ↔ 𝑎 ≤ 𝑟 ) ) |
25 |
24
|
ralbidva |
⊢ ( ( ( 𝐴 ⊆ ℤ ∧ 𝐴 ≠ ∅ ∧ 𝐴 ∈ Fin ) ∧ 𝑟 ∈ ℝ ) → ( ∀ 𝑎 ∈ 𝐴 ¬ 𝑟 < 𝑎 ↔ ∀ 𝑎 ∈ 𝐴 𝑎 ≤ 𝑟 ) ) |
26 |
25
|
biimpd |
⊢ ( ( ( 𝐴 ⊆ ℤ ∧ 𝐴 ≠ ∅ ∧ 𝐴 ∈ Fin ) ∧ 𝑟 ∈ ℝ ) → ( ∀ 𝑎 ∈ 𝐴 ¬ 𝑟 < 𝑎 → ∀ 𝑎 ∈ 𝐴 𝑎 ≤ 𝑟 ) ) |
27 |
26
|
adantrd |
⊢ ( ( ( 𝐴 ⊆ ℤ ∧ 𝐴 ≠ ∅ ∧ 𝐴 ∈ Fin ) ∧ 𝑟 ∈ ℝ ) → ( ( ∀ 𝑎 ∈ 𝐴 ¬ 𝑟 < 𝑎 ∧ ∀ 𝑎 ∈ ℤ ( 𝑎 < 𝑟 → ∃ 𝑏 ∈ 𝐴 𝑎 < 𝑏 ) ) → ∀ 𝑎 ∈ 𝐴 𝑎 ≤ 𝑟 ) ) |
28 |
27
|
reximdva |
⊢ ( ( 𝐴 ⊆ ℤ ∧ 𝐴 ≠ ∅ ∧ 𝐴 ∈ Fin ) → ( ∃ 𝑟 ∈ ℝ ( ∀ 𝑎 ∈ 𝐴 ¬ 𝑟 < 𝑎 ∧ ∀ 𝑎 ∈ ℤ ( 𝑎 < 𝑟 → ∃ 𝑏 ∈ 𝐴 𝑎 < 𝑏 ) ) → ∃ 𝑟 ∈ ℝ ∀ 𝑎 ∈ 𝐴 𝑎 ≤ 𝑟 ) ) |
29 |
15 28
|
syld |
⊢ ( ( 𝐴 ⊆ ℤ ∧ 𝐴 ≠ ∅ ∧ 𝐴 ∈ Fin ) → ( ∃ 𝑟 ∈ 𝐴 ( ∀ 𝑎 ∈ 𝐴 ¬ 𝑟 < 𝑎 ∧ ∀ 𝑎 ∈ ℤ ( 𝑎 < 𝑟 → ∃ 𝑏 ∈ 𝐴 𝑎 < 𝑏 ) ) → ∃ 𝑟 ∈ ℝ ∀ 𝑎 ∈ 𝐴 𝑎 ≤ 𝑟 ) ) |
30 |
10 29
|
mpd |
⊢ ( ( 𝐴 ⊆ ℤ ∧ 𝐴 ≠ ∅ ∧ 𝐴 ∈ Fin ) → ∃ 𝑟 ∈ ℝ ∀ 𝑎 ∈ 𝐴 𝑎 ≤ 𝑟 ) |
31 |
|
suprzcl |
⊢ ( ( 𝐴 ⊆ ℤ ∧ 𝐴 ≠ ∅ ∧ ∃ 𝑟 ∈ ℝ ∀ 𝑎 ∈ 𝐴 𝑎 ≤ 𝑟 ) → sup ( 𝐴 , ℝ , < ) ∈ 𝐴 ) |
32 |
30 31
|
syld3an3 |
⊢ ( ( 𝐴 ⊆ ℤ ∧ 𝐴 ≠ ∅ ∧ 𝐴 ∈ Fin ) → sup ( 𝐴 , ℝ , < ) ∈ 𝐴 ) |