| Step |
Hyp |
Ref |
Expression |
| 1 |
|
suprnub |
⊢ ( ( ( 𝐴 ⊆ ℝ ∧ 𝐴 ≠ ∅ ∧ ∃ 𝑥 ∈ ℝ ∀ 𝑦 ∈ 𝐴 𝑦 ≤ 𝑥 ) ∧ 𝐵 ∈ ℝ ) → ( ¬ 𝐵 < sup ( 𝐴 , ℝ , < ) ↔ ∀ 𝑤 ∈ 𝐴 ¬ 𝐵 < 𝑤 ) ) |
| 2 |
|
suprcl |
⊢ ( ( 𝐴 ⊆ ℝ ∧ 𝐴 ≠ ∅ ∧ ∃ 𝑥 ∈ ℝ ∀ 𝑦 ∈ 𝐴 𝑦 ≤ 𝑥 ) → sup ( 𝐴 , ℝ , < ) ∈ ℝ ) |
| 3 |
|
lenlt |
⊢ ( ( sup ( 𝐴 , ℝ , < ) ∈ ℝ ∧ 𝐵 ∈ ℝ ) → ( sup ( 𝐴 , ℝ , < ) ≤ 𝐵 ↔ ¬ 𝐵 < sup ( 𝐴 , ℝ , < ) ) ) |
| 4 |
2 3
|
sylan |
⊢ ( ( ( 𝐴 ⊆ ℝ ∧ 𝐴 ≠ ∅ ∧ ∃ 𝑥 ∈ ℝ ∀ 𝑦 ∈ 𝐴 𝑦 ≤ 𝑥 ) ∧ 𝐵 ∈ ℝ ) → ( sup ( 𝐴 , ℝ , < ) ≤ 𝐵 ↔ ¬ 𝐵 < sup ( 𝐴 , ℝ , < ) ) ) |
| 5 |
|
simpl1 |
⊢ ( ( ( 𝐴 ⊆ ℝ ∧ 𝐴 ≠ ∅ ∧ ∃ 𝑥 ∈ ℝ ∀ 𝑦 ∈ 𝐴 𝑦 ≤ 𝑥 ) ∧ 𝐵 ∈ ℝ ) → 𝐴 ⊆ ℝ ) |
| 6 |
5
|
sselda |
⊢ ( ( ( ( 𝐴 ⊆ ℝ ∧ 𝐴 ≠ ∅ ∧ ∃ 𝑥 ∈ ℝ ∀ 𝑦 ∈ 𝐴 𝑦 ≤ 𝑥 ) ∧ 𝐵 ∈ ℝ ) ∧ 𝑤 ∈ 𝐴 ) → 𝑤 ∈ ℝ ) |
| 7 |
|
simplr |
⊢ ( ( ( ( 𝐴 ⊆ ℝ ∧ 𝐴 ≠ ∅ ∧ ∃ 𝑥 ∈ ℝ ∀ 𝑦 ∈ 𝐴 𝑦 ≤ 𝑥 ) ∧ 𝐵 ∈ ℝ ) ∧ 𝑤 ∈ 𝐴 ) → 𝐵 ∈ ℝ ) |
| 8 |
6 7
|
lenltd |
⊢ ( ( ( ( 𝐴 ⊆ ℝ ∧ 𝐴 ≠ ∅ ∧ ∃ 𝑥 ∈ ℝ ∀ 𝑦 ∈ 𝐴 𝑦 ≤ 𝑥 ) ∧ 𝐵 ∈ ℝ ) ∧ 𝑤 ∈ 𝐴 ) → ( 𝑤 ≤ 𝐵 ↔ ¬ 𝐵 < 𝑤 ) ) |
| 9 |
8
|
ralbidva |
⊢ ( ( ( 𝐴 ⊆ ℝ ∧ 𝐴 ≠ ∅ ∧ ∃ 𝑥 ∈ ℝ ∀ 𝑦 ∈ 𝐴 𝑦 ≤ 𝑥 ) ∧ 𝐵 ∈ ℝ ) → ( ∀ 𝑤 ∈ 𝐴 𝑤 ≤ 𝐵 ↔ ∀ 𝑤 ∈ 𝐴 ¬ 𝐵 < 𝑤 ) ) |
| 10 |
1 4 9
|
3bitr4d |
⊢ ( ( ( 𝐴 ⊆ ℝ ∧ 𝐴 ≠ ∅ ∧ ∃ 𝑥 ∈ ℝ ∀ 𝑦 ∈ 𝐴 𝑦 ≤ 𝑥 ) ∧ 𝐵 ∈ ℝ ) → ( sup ( 𝐴 , ℝ , < ) ≤ 𝐵 ↔ ∀ 𝑤 ∈ 𝐴 𝑤 ≤ 𝐵 ) ) |
| 11 |
|
breq1 |
⊢ ( 𝑤 = 𝑧 → ( 𝑤 ≤ 𝐵 ↔ 𝑧 ≤ 𝐵 ) ) |
| 12 |
11
|
cbvralvw |
⊢ ( ∀ 𝑤 ∈ 𝐴 𝑤 ≤ 𝐵 ↔ ∀ 𝑧 ∈ 𝐴 𝑧 ≤ 𝐵 ) |
| 13 |
10 12
|
bitrdi |
⊢ ( ( ( 𝐴 ⊆ ℝ ∧ 𝐴 ≠ ∅ ∧ ∃ 𝑥 ∈ ℝ ∀ 𝑦 ∈ 𝐴 𝑦 ≤ 𝑥 ) ∧ 𝐵 ∈ ℝ ) → ( sup ( 𝐴 , ℝ , < ) ≤ 𝐵 ↔ ∀ 𝑧 ∈ 𝐴 𝑧 ≤ 𝐵 ) ) |