Description: The supremum of a nonempty bounded set of reals is less than or equal to an upper bound. (Contributed by NM, 18-Mar-2005) (Revised by Mario Carneiro, 6-Sep-2014)
Ref | Expression | ||
---|---|---|---|
Hypothesis | sup3i.1 | ⊢ ( 𝐴 ⊆ ℝ ∧ 𝐴 ≠ ∅ ∧ ∃ 𝑥 ∈ ℝ ∀ 𝑦 ∈ 𝐴 𝑦 ≤ 𝑥 ) | |
Assertion | suprleubii | ⊢ ( 𝐵 ∈ ℝ → ( sup ( 𝐴 , ℝ , < ) ≤ 𝐵 ↔ ∀ 𝑧 ∈ 𝐴 𝑧 ≤ 𝐵 ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sup3i.1 | ⊢ ( 𝐴 ⊆ ℝ ∧ 𝐴 ≠ ∅ ∧ ∃ 𝑥 ∈ ℝ ∀ 𝑦 ∈ 𝐴 𝑦 ≤ 𝑥 ) | |
2 | suprleub | ⊢ ( ( ( 𝐴 ⊆ ℝ ∧ 𝐴 ≠ ∅ ∧ ∃ 𝑥 ∈ ℝ ∀ 𝑦 ∈ 𝐴 𝑦 ≤ 𝑥 ) ∧ 𝐵 ∈ ℝ ) → ( sup ( 𝐴 , ℝ , < ) ≤ 𝐵 ↔ ∀ 𝑧 ∈ 𝐴 𝑧 ≤ 𝐵 ) ) | |
3 | 1 2 | mpan | ⊢ ( 𝐵 ∈ ℝ → ( sup ( 𝐴 , ℝ , < ) ≤ 𝐵 ↔ ∀ 𝑧 ∈ 𝐴 𝑧 ≤ 𝐵 ) ) |