Metamath Proof Explorer


Theorem suprleubii

Description: The supremum of a nonempty bounded set of reals is less than or equal to an upper bound. (Contributed by NM, 18-Mar-2005) (Revised by Mario Carneiro, 6-Sep-2014)

Ref Expression
Hypothesis sup3i.1 ( 𝐴 ⊆ ℝ ∧ 𝐴 ≠ ∅ ∧ ∃ 𝑥 ∈ ℝ ∀ 𝑦𝐴 𝑦𝑥 )
Assertion suprleubii ( 𝐵 ∈ ℝ → ( sup ( 𝐴 , ℝ , < ) ≤ 𝐵 ↔ ∀ 𝑧𝐴 𝑧𝐵 ) )

Proof

Step Hyp Ref Expression
1 sup3i.1 ( 𝐴 ⊆ ℝ ∧ 𝐴 ≠ ∅ ∧ ∃ 𝑥 ∈ ℝ ∀ 𝑦𝐴 𝑦𝑥 )
2 suprleub ( ( ( 𝐴 ⊆ ℝ ∧ 𝐴 ≠ ∅ ∧ ∃ 𝑥 ∈ ℝ ∀ 𝑦𝐴 𝑦𝑥 ) ∧ 𝐵 ∈ ℝ ) → ( sup ( 𝐴 , ℝ , < ) ≤ 𝐵 ↔ ∀ 𝑧𝐴 𝑧𝐵 ) )
3 1 2 mpan ( 𝐵 ∈ ℝ → ( sup ( 𝐴 , ℝ , < ) ≤ 𝐵 ↔ ∀ 𝑧𝐴 𝑧𝐵 ) )