Step |
Hyp |
Ref |
Expression |
1 |
|
suprleubrnmpt.x |
⊢ Ⅎ 𝑥 𝜑 |
2 |
|
suprleubrnmpt.a |
⊢ ( 𝜑 → 𝐴 ≠ ∅ ) |
3 |
|
suprleubrnmpt.b |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → 𝐵 ∈ ℝ ) |
4 |
|
suprleubrnmpt.e |
⊢ ( 𝜑 → ∃ 𝑦 ∈ ℝ ∀ 𝑥 ∈ 𝐴 𝐵 ≤ 𝑦 ) |
5 |
|
suprleubrnmpt.c |
⊢ ( 𝜑 → 𝐶 ∈ ℝ ) |
6 |
|
eqid |
⊢ ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) = ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) |
7 |
1 6 3
|
rnmptssd |
⊢ ( 𝜑 → ran ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ⊆ ℝ ) |
8 |
1 3 6 2
|
rnmptn0 |
⊢ ( 𝜑 → ran ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ≠ ∅ ) |
9 |
1 4
|
rnmptbdd |
⊢ ( 𝜑 → ∃ 𝑦 ∈ ℝ ∀ 𝑤 ∈ ran ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) 𝑤 ≤ 𝑦 ) |
10 |
|
suprleub |
⊢ ( ( ( ran ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ⊆ ℝ ∧ ran ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ≠ ∅ ∧ ∃ 𝑦 ∈ ℝ ∀ 𝑤 ∈ ran ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) 𝑤 ≤ 𝑦 ) ∧ 𝐶 ∈ ℝ ) → ( sup ( ran ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) , ℝ , < ) ≤ 𝐶 ↔ ∀ 𝑧 ∈ ran ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) 𝑧 ≤ 𝐶 ) ) |
11 |
7 8 9 5 10
|
syl31anc |
⊢ ( 𝜑 → ( sup ( ran ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) , ℝ , < ) ≤ 𝐶 ↔ ∀ 𝑧 ∈ ran ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) 𝑧 ≤ 𝐶 ) ) |
12 |
|
nfmpt1 |
⊢ Ⅎ 𝑥 ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) |
13 |
12
|
nfrn |
⊢ Ⅎ 𝑥 ran ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) |
14 |
|
nfv |
⊢ Ⅎ 𝑥 𝑧 ≤ 𝐶 |
15 |
13 14
|
nfralw |
⊢ Ⅎ 𝑥 ∀ 𝑧 ∈ ran ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) 𝑧 ≤ 𝐶 |
16 |
1 15
|
nfan |
⊢ Ⅎ 𝑥 ( 𝜑 ∧ ∀ 𝑧 ∈ ran ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) 𝑧 ≤ 𝐶 ) |
17 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → 𝑥 ∈ 𝐴 ) |
18 |
6
|
elrnmpt1 |
⊢ ( ( 𝑥 ∈ 𝐴 ∧ 𝐵 ∈ ℝ ) → 𝐵 ∈ ran ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ) |
19 |
17 3 18
|
syl2anc |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → 𝐵 ∈ ran ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ) |
20 |
19
|
adantlr |
⊢ ( ( ( 𝜑 ∧ ∀ 𝑧 ∈ ran ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) 𝑧 ≤ 𝐶 ) ∧ 𝑥 ∈ 𝐴 ) → 𝐵 ∈ ran ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ) |
21 |
|
simplr |
⊢ ( ( ( 𝜑 ∧ ∀ 𝑧 ∈ ran ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) 𝑧 ≤ 𝐶 ) ∧ 𝑥 ∈ 𝐴 ) → ∀ 𝑧 ∈ ran ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) 𝑧 ≤ 𝐶 ) |
22 |
|
breq1 |
⊢ ( 𝑧 = 𝐵 → ( 𝑧 ≤ 𝐶 ↔ 𝐵 ≤ 𝐶 ) ) |
23 |
22
|
rspcva |
⊢ ( ( 𝐵 ∈ ran ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ∧ ∀ 𝑧 ∈ ran ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) 𝑧 ≤ 𝐶 ) → 𝐵 ≤ 𝐶 ) |
24 |
20 21 23
|
syl2anc |
⊢ ( ( ( 𝜑 ∧ ∀ 𝑧 ∈ ran ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) 𝑧 ≤ 𝐶 ) ∧ 𝑥 ∈ 𝐴 ) → 𝐵 ≤ 𝐶 ) |
25 |
24
|
ex |
⊢ ( ( 𝜑 ∧ ∀ 𝑧 ∈ ran ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) 𝑧 ≤ 𝐶 ) → ( 𝑥 ∈ 𝐴 → 𝐵 ≤ 𝐶 ) ) |
26 |
16 25
|
ralrimi |
⊢ ( ( 𝜑 ∧ ∀ 𝑧 ∈ ran ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) 𝑧 ≤ 𝐶 ) → ∀ 𝑥 ∈ 𝐴 𝐵 ≤ 𝐶 ) |
27 |
26
|
ex |
⊢ ( 𝜑 → ( ∀ 𝑧 ∈ ran ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) 𝑧 ≤ 𝐶 → ∀ 𝑥 ∈ 𝐴 𝐵 ≤ 𝐶 ) ) |
28 |
|
vex |
⊢ 𝑧 ∈ V |
29 |
6
|
elrnmpt |
⊢ ( 𝑧 ∈ V → ( 𝑧 ∈ ran ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ↔ ∃ 𝑥 ∈ 𝐴 𝑧 = 𝐵 ) ) |
30 |
28 29
|
ax-mp |
⊢ ( 𝑧 ∈ ran ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ↔ ∃ 𝑥 ∈ 𝐴 𝑧 = 𝐵 ) |
31 |
30
|
biimpi |
⊢ ( 𝑧 ∈ ran ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) → ∃ 𝑥 ∈ 𝐴 𝑧 = 𝐵 ) |
32 |
31
|
adantl |
⊢ ( ( ∀ 𝑥 ∈ 𝐴 𝐵 ≤ 𝐶 ∧ 𝑧 ∈ ran ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ) → ∃ 𝑥 ∈ 𝐴 𝑧 = 𝐵 ) |
33 |
|
nfra1 |
⊢ Ⅎ 𝑥 ∀ 𝑥 ∈ 𝐴 𝐵 ≤ 𝐶 |
34 |
|
rspa |
⊢ ( ( ∀ 𝑥 ∈ 𝐴 𝐵 ≤ 𝐶 ∧ 𝑥 ∈ 𝐴 ) → 𝐵 ≤ 𝐶 ) |
35 |
22
|
biimprcd |
⊢ ( 𝐵 ≤ 𝐶 → ( 𝑧 = 𝐵 → 𝑧 ≤ 𝐶 ) ) |
36 |
34 35
|
syl |
⊢ ( ( ∀ 𝑥 ∈ 𝐴 𝐵 ≤ 𝐶 ∧ 𝑥 ∈ 𝐴 ) → ( 𝑧 = 𝐵 → 𝑧 ≤ 𝐶 ) ) |
37 |
36
|
ex |
⊢ ( ∀ 𝑥 ∈ 𝐴 𝐵 ≤ 𝐶 → ( 𝑥 ∈ 𝐴 → ( 𝑧 = 𝐵 → 𝑧 ≤ 𝐶 ) ) ) |
38 |
33 14 37
|
rexlimd |
⊢ ( ∀ 𝑥 ∈ 𝐴 𝐵 ≤ 𝐶 → ( ∃ 𝑥 ∈ 𝐴 𝑧 = 𝐵 → 𝑧 ≤ 𝐶 ) ) |
39 |
38
|
adantr |
⊢ ( ( ∀ 𝑥 ∈ 𝐴 𝐵 ≤ 𝐶 ∧ 𝑧 ∈ ran ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ) → ( ∃ 𝑥 ∈ 𝐴 𝑧 = 𝐵 → 𝑧 ≤ 𝐶 ) ) |
40 |
32 39
|
mpd |
⊢ ( ( ∀ 𝑥 ∈ 𝐴 𝐵 ≤ 𝐶 ∧ 𝑧 ∈ ran ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ) → 𝑧 ≤ 𝐶 ) |
41 |
40
|
ralrimiva |
⊢ ( ∀ 𝑥 ∈ 𝐴 𝐵 ≤ 𝐶 → ∀ 𝑧 ∈ ran ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) 𝑧 ≤ 𝐶 ) |
42 |
41
|
a1i |
⊢ ( 𝜑 → ( ∀ 𝑥 ∈ 𝐴 𝐵 ≤ 𝐶 → ∀ 𝑧 ∈ ran ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) 𝑧 ≤ 𝐶 ) ) |
43 |
27 42
|
impbid |
⊢ ( 𝜑 → ( ∀ 𝑧 ∈ ran ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) 𝑧 ≤ 𝐶 ↔ ∀ 𝑥 ∈ 𝐴 𝐵 ≤ 𝐶 ) ) |
44 |
11 43
|
bitrd |
⊢ ( 𝜑 → ( sup ( ran ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) , ℝ , < ) ≤ 𝐶 ↔ ∀ 𝑥 ∈ 𝐴 𝐵 ≤ 𝐶 ) ) |