Metamath Proof Explorer


Theorem suprleubrnmpt

Description: The supremum of a nonempty bounded indexed set of reals is less than or equal to an upper bound. (Contributed by Glauco Siliprandi, 23-Oct-2021)

Ref Expression
Hypotheses suprleubrnmpt.x 𝑥 𝜑
suprleubrnmpt.a ( 𝜑𝐴 ≠ ∅ )
suprleubrnmpt.b ( ( 𝜑𝑥𝐴 ) → 𝐵 ∈ ℝ )
suprleubrnmpt.e ( 𝜑 → ∃ 𝑦 ∈ ℝ ∀ 𝑥𝐴 𝐵𝑦 )
suprleubrnmpt.c ( 𝜑𝐶 ∈ ℝ )
Assertion suprleubrnmpt ( 𝜑 → ( sup ( ran ( 𝑥𝐴𝐵 ) , ℝ , < ) ≤ 𝐶 ↔ ∀ 𝑥𝐴 𝐵𝐶 ) )

Proof

Step Hyp Ref Expression
1 suprleubrnmpt.x 𝑥 𝜑
2 suprleubrnmpt.a ( 𝜑𝐴 ≠ ∅ )
3 suprleubrnmpt.b ( ( 𝜑𝑥𝐴 ) → 𝐵 ∈ ℝ )
4 suprleubrnmpt.e ( 𝜑 → ∃ 𝑦 ∈ ℝ ∀ 𝑥𝐴 𝐵𝑦 )
5 suprleubrnmpt.c ( 𝜑𝐶 ∈ ℝ )
6 eqid ( 𝑥𝐴𝐵 ) = ( 𝑥𝐴𝐵 )
7 1 6 3 rnmptssd ( 𝜑 → ran ( 𝑥𝐴𝐵 ) ⊆ ℝ )
8 1 3 6 2 rnmptn0 ( 𝜑 → ran ( 𝑥𝐴𝐵 ) ≠ ∅ )
9 1 4 rnmptbdd ( 𝜑 → ∃ 𝑦 ∈ ℝ ∀ 𝑤 ∈ ran ( 𝑥𝐴𝐵 ) 𝑤𝑦 )
10 suprleub ( ( ( ran ( 𝑥𝐴𝐵 ) ⊆ ℝ ∧ ran ( 𝑥𝐴𝐵 ) ≠ ∅ ∧ ∃ 𝑦 ∈ ℝ ∀ 𝑤 ∈ ran ( 𝑥𝐴𝐵 ) 𝑤𝑦 ) ∧ 𝐶 ∈ ℝ ) → ( sup ( ran ( 𝑥𝐴𝐵 ) , ℝ , < ) ≤ 𝐶 ↔ ∀ 𝑧 ∈ ran ( 𝑥𝐴𝐵 ) 𝑧𝐶 ) )
11 7 8 9 5 10 syl31anc ( 𝜑 → ( sup ( ran ( 𝑥𝐴𝐵 ) , ℝ , < ) ≤ 𝐶 ↔ ∀ 𝑧 ∈ ran ( 𝑥𝐴𝐵 ) 𝑧𝐶 ) )
12 nfmpt1 𝑥 ( 𝑥𝐴𝐵 )
13 12 nfrn 𝑥 ran ( 𝑥𝐴𝐵 )
14 nfv 𝑥 𝑧𝐶
15 13 14 nfralw 𝑥𝑧 ∈ ran ( 𝑥𝐴𝐵 ) 𝑧𝐶
16 1 15 nfan 𝑥 ( 𝜑 ∧ ∀ 𝑧 ∈ ran ( 𝑥𝐴𝐵 ) 𝑧𝐶 )
17 simpr ( ( 𝜑𝑥𝐴 ) → 𝑥𝐴 )
18 6 elrnmpt1 ( ( 𝑥𝐴𝐵 ∈ ℝ ) → 𝐵 ∈ ran ( 𝑥𝐴𝐵 ) )
19 17 3 18 syl2anc ( ( 𝜑𝑥𝐴 ) → 𝐵 ∈ ran ( 𝑥𝐴𝐵 ) )
20 19 adantlr ( ( ( 𝜑 ∧ ∀ 𝑧 ∈ ran ( 𝑥𝐴𝐵 ) 𝑧𝐶 ) ∧ 𝑥𝐴 ) → 𝐵 ∈ ran ( 𝑥𝐴𝐵 ) )
21 simplr ( ( ( 𝜑 ∧ ∀ 𝑧 ∈ ran ( 𝑥𝐴𝐵 ) 𝑧𝐶 ) ∧ 𝑥𝐴 ) → ∀ 𝑧 ∈ ran ( 𝑥𝐴𝐵 ) 𝑧𝐶 )
22 breq1 ( 𝑧 = 𝐵 → ( 𝑧𝐶𝐵𝐶 ) )
23 22 rspcva ( ( 𝐵 ∈ ran ( 𝑥𝐴𝐵 ) ∧ ∀ 𝑧 ∈ ran ( 𝑥𝐴𝐵 ) 𝑧𝐶 ) → 𝐵𝐶 )
24 20 21 23 syl2anc ( ( ( 𝜑 ∧ ∀ 𝑧 ∈ ran ( 𝑥𝐴𝐵 ) 𝑧𝐶 ) ∧ 𝑥𝐴 ) → 𝐵𝐶 )
25 24 ex ( ( 𝜑 ∧ ∀ 𝑧 ∈ ran ( 𝑥𝐴𝐵 ) 𝑧𝐶 ) → ( 𝑥𝐴𝐵𝐶 ) )
26 16 25 ralrimi ( ( 𝜑 ∧ ∀ 𝑧 ∈ ran ( 𝑥𝐴𝐵 ) 𝑧𝐶 ) → ∀ 𝑥𝐴 𝐵𝐶 )
27 26 ex ( 𝜑 → ( ∀ 𝑧 ∈ ran ( 𝑥𝐴𝐵 ) 𝑧𝐶 → ∀ 𝑥𝐴 𝐵𝐶 ) )
28 vex 𝑧 ∈ V
29 6 elrnmpt ( 𝑧 ∈ V → ( 𝑧 ∈ ran ( 𝑥𝐴𝐵 ) ↔ ∃ 𝑥𝐴 𝑧 = 𝐵 ) )
30 28 29 ax-mp ( 𝑧 ∈ ran ( 𝑥𝐴𝐵 ) ↔ ∃ 𝑥𝐴 𝑧 = 𝐵 )
31 30 biimpi ( 𝑧 ∈ ran ( 𝑥𝐴𝐵 ) → ∃ 𝑥𝐴 𝑧 = 𝐵 )
32 31 adantl ( ( ∀ 𝑥𝐴 𝐵𝐶𝑧 ∈ ran ( 𝑥𝐴𝐵 ) ) → ∃ 𝑥𝐴 𝑧 = 𝐵 )
33 nfra1 𝑥𝑥𝐴 𝐵𝐶
34 rspa ( ( ∀ 𝑥𝐴 𝐵𝐶𝑥𝐴 ) → 𝐵𝐶 )
35 22 biimprcd ( 𝐵𝐶 → ( 𝑧 = 𝐵𝑧𝐶 ) )
36 34 35 syl ( ( ∀ 𝑥𝐴 𝐵𝐶𝑥𝐴 ) → ( 𝑧 = 𝐵𝑧𝐶 ) )
37 36 ex ( ∀ 𝑥𝐴 𝐵𝐶 → ( 𝑥𝐴 → ( 𝑧 = 𝐵𝑧𝐶 ) ) )
38 33 14 37 rexlimd ( ∀ 𝑥𝐴 𝐵𝐶 → ( ∃ 𝑥𝐴 𝑧 = 𝐵𝑧𝐶 ) )
39 38 adantr ( ( ∀ 𝑥𝐴 𝐵𝐶𝑧 ∈ ran ( 𝑥𝐴𝐵 ) ) → ( ∃ 𝑥𝐴 𝑧 = 𝐵𝑧𝐶 ) )
40 32 39 mpd ( ( ∀ 𝑥𝐴 𝐵𝐶𝑧 ∈ ran ( 𝑥𝐴𝐵 ) ) → 𝑧𝐶 )
41 40 ralrimiva ( ∀ 𝑥𝐴 𝐵𝐶 → ∀ 𝑧 ∈ ran ( 𝑥𝐴𝐵 ) 𝑧𝐶 )
42 41 a1i ( 𝜑 → ( ∀ 𝑥𝐴 𝐵𝐶 → ∀ 𝑧 ∈ ran ( 𝑥𝐴𝐵 ) 𝑧𝐶 ) )
43 27 42 impbid ( 𝜑 → ( ∀ 𝑧 ∈ ran ( 𝑥𝐴𝐵 ) 𝑧𝐶 ↔ ∀ 𝑥𝐴 𝐵𝐶 ) )
44 11 43 bitrd ( 𝜑 → ( sup ( ran ( 𝑥𝐴𝐵 ) , ℝ , < ) ≤ 𝐶 ↔ ∀ 𝑥𝐴 𝐵𝐶 ) )