Metamath Proof Explorer


Theorem suprlubii

Description: The supremum of a nonempty bounded set of reals is the least upper bound. (Contributed by NM, 15-Oct-2004) (Revised by Mario Carneiro, 6-Sep-2014)

Ref Expression
Hypothesis sup3i.1 ( 𝐴 ⊆ ℝ ∧ 𝐴 ≠ ∅ ∧ ∃ 𝑥 ∈ ℝ ∀ 𝑦𝐴 𝑦𝑥 )
Assertion suprlubii ( 𝐵 ∈ ℝ → ( 𝐵 < sup ( 𝐴 , ℝ , < ) ↔ ∃ 𝑧𝐴 𝐵 < 𝑧 ) )

Proof

Step Hyp Ref Expression
1 sup3i.1 ( 𝐴 ⊆ ℝ ∧ 𝐴 ≠ ∅ ∧ ∃ 𝑥 ∈ ℝ ∀ 𝑦𝐴 𝑦𝑥 )
2 suprlub ( ( ( 𝐴 ⊆ ℝ ∧ 𝐴 ≠ ∅ ∧ ∃ 𝑥 ∈ ℝ ∀ 𝑦𝐴 𝑦𝑥 ) ∧ 𝐵 ∈ ℝ ) → ( 𝐵 < sup ( 𝐴 , ℝ , < ) ↔ ∃ 𝑧𝐴 𝐵 < 𝑧 ) )
3 1 2 mpan ( 𝐵 ∈ ℝ → ( 𝐵 < sup ( 𝐴 , ℝ , < ) ↔ ∃ 𝑧𝐴 𝐵 < 𝑧 ) )