Metamath Proof Explorer


Theorem suprnub

Description: An upper bound is not less than the supremum of a nonempty bounded set of reals. (Contributed by NM, 15-Nov-2004) (Revised by Mario Carneiro, 6-Sep-2014)

Ref Expression
Assertion suprnub ( ( ( 𝐴 ⊆ ℝ ∧ 𝐴 ≠ ∅ ∧ ∃ 𝑥 ∈ ℝ ∀ 𝑦𝐴 𝑦𝑥 ) ∧ 𝐵 ∈ ℝ ) → ( ¬ 𝐵 < sup ( 𝐴 , ℝ , < ) ↔ ∀ 𝑧𝐴 ¬ 𝐵 < 𝑧 ) )

Proof

Step Hyp Ref Expression
1 suprlub ( ( ( 𝐴 ⊆ ℝ ∧ 𝐴 ≠ ∅ ∧ ∃ 𝑥 ∈ ℝ ∀ 𝑦𝐴 𝑦𝑥 ) ∧ 𝐵 ∈ ℝ ) → ( 𝐵 < sup ( 𝐴 , ℝ , < ) ↔ ∃ 𝑧𝐴 𝐵 < 𝑧 ) )
2 1 notbid ( ( ( 𝐴 ⊆ ℝ ∧ 𝐴 ≠ ∅ ∧ ∃ 𝑥 ∈ ℝ ∀ 𝑦𝐴 𝑦𝑥 ) ∧ 𝐵 ∈ ℝ ) → ( ¬ 𝐵 < sup ( 𝐴 , ℝ , < ) ↔ ¬ ∃ 𝑧𝐴 𝐵 < 𝑧 ) )
3 ralnex ( ∀ 𝑧𝐴 ¬ 𝐵 < 𝑧 ↔ ¬ ∃ 𝑧𝐴 𝐵 < 𝑧 )
4 2 3 bitr4di ( ( ( 𝐴 ⊆ ℝ ∧ 𝐴 ≠ ∅ ∧ ∃ 𝑥 ∈ ℝ ∀ 𝑦𝐴 𝑦𝑥 ) ∧ 𝐵 ∈ ℝ ) → ( ¬ 𝐵 < sup ( 𝐴 , ℝ , < ) ↔ ∀ 𝑧𝐴 ¬ 𝐵 < 𝑧 ) )