Description: Natural deduction form of suprubd . (Contributed by Stanislas Polu, 9-Mar-2020)
Ref | Expression | ||
---|---|---|---|
Hypotheses | suprubd.1 | ⊢ ( 𝜑 → 𝐴 ⊆ ℝ ) | |
suprubd.2 | ⊢ ( 𝜑 → 𝐴 ≠ ∅ ) | ||
suprubd.3 | ⊢ ( 𝜑 → ∃ 𝑥 ∈ ℝ ∀ 𝑦 ∈ 𝐴 𝑦 ≤ 𝑥 ) | ||
suprubd.4 | ⊢ ( 𝜑 → 𝐵 ∈ 𝐴 ) | ||
Assertion | suprubd | ⊢ ( 𝜑 → 𝐵 ≤ sup ( 𝐴 , ℝ , < ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | suprubd.1 | ⊢ ( 𝜑 → 𝐴 ⊆ ℝ ) | |
2 | suprubd.2 | ⊢ ( 𝜑 → 𝐴 ≠ ∅ ) | |
3 | suprubd.3 | ⊢ ( 𝜑 → ∃ 𝑥 ∈ ℝ ∀ 𝑦 ∈ 𝐴 𝑦 ≤ 𝑥 ) | |
4 | suprubd.4 | ⊢ ( 𝜑 → 𝐵 ∈ 𝐴 ) | |
5 | suprub | ⊢ ( ( ( 𝐴 ⊆ ℝ ∧ 𝐴 ≠ ∅ ∧ ∃ 𝑥 ∈ ℝ ∀ 𝑦 ∈ 𝐴 𝑦 ≤ 𝑥 ) ∧ 𝐵 ∈ 𝐴 ) → 𝐵 ≤ sup ( 𝐴 , ℝ , < ) ) | |
6 | 1 2 3 4 5 | syl31anc | ⊢ ( 𝜑 → 𝐵 ≤ sup ( 𝐴 , ℝ , < ) ) |