Metamath Proof Explorer


Theorem suprubd

Description: Natural deduction form of suprubd . (Contributed by Stanislas Polu, 9-Mar-2020)

Ref Expression
Hypotheses suprubd.1 ( 𝜑𝐴 ⊆ ℝ )
suprubd.2 ( 𝜑𝐴 ≠ ∅ )
suprubd.3 ( 𝜑 → ∃ 𝑥 ∈ ℝ ∀ 𝑦𝐴 𝑦𝑥 )
suprubd.4 ( 𝜑𝐵𝐴 )
Assertion suprubd ( 𝜑𝐵 ≤ sup ( 𝐴 , ℝ , < ) )

Proof

Step Hyp Ref Expression
1 suprubd.1 ( 𝜑𝐴 ⊆ ℝ )
2 suprubd.2 ( 𝜑𝐴 ≠ ∅ )
3 suprubd.3 ( 𝜑 → ∃ 𝑥 ∈ ℝ ∀ 𝑦𝐴 𝑦𝑥 )
4 suprubd.4 ( 𝜑𝐵𝐴 )
5 suprub ( ( ( 𝐴 ⊆ ℝ ∧ 𝐴 ≠ ∅ ∧ ∃ 𝑥 ∈ ℝ ∀ 𝑦𝐴 𝑦𝑥 ) ∧ 𝐵𝐴 ) → 𝐵 ≤ sup ( 𝐴 , ℝ , < ) )
6 1 2 3 4 5 syl31anc ( 𝜑𝐵 ≤ sup ( 𝐴 , ℝ , < ) )