Step |
Hyp |
Ref |
Expression |
1 |
|
suprubrnmpt.x |
⊢ Ⅎ 𝑥 𝜑 |
2 |
|
suprubrnmpt.b |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → 𝐵 ∈ ℝ ) |
3 |
|
suprubrnmpt.e |
⊢ ( 𝜑 → ∃ 𝑦 ∈ ℝ ∀ 𝑥 ∈ 𝐴 𝐵 ≤ 𝑦 ) |
4 |
|
eqid |
⊢ ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) = ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) |
5 |
1 4 2
|
rnmptssd |
⊢ ( 𝜑 → ran ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ⊆ ℝ ) |
6 |
5
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → ran ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ⊆ ℝ ) |
7 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → 𝑥 ∈ 𝐴 ) |
8 |
4
|
elrnmpt1 |
⊢ ( ( 𝑥 ∈ 𝐴 ∧ 𝐵 ∈ ℝ ) → 𝐵 ∈ ran ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ) |
9 |
7 2 8
|
syl2anc |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → 𝐵 ∈ ran ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ) |
10 |
9
|
ne0d |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → ran ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ≠ ∅ ) |
11 |
1 3
|
rnmptbdd |
⊢ ( 𝜑 → ∃ 𝑦 ∈ ℝ ∀ 𝑤 ∈ ran ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) 𝑤 ≤ 𝑦 ) |
12 |
11
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → ∃ 𝑦 ∈ ℝ ∀ 𝑤 ∈ ran ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) 𝑤 ≤ 𝑦 ) |
13 |
6 10 12 9
|
suprubd |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → 𝐵 ≤ sup ( ran ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) , ℝ , < ) ) |