Metamath Proof Explorer


Theorem suprubrnmpt

Description: A member of a nonempty indexed set of reals is less than or equal to the set's upper bound. (Contributed by Glauco Siliprandi, 23-Oct-2021)

Ref Expression
Hypotheses suprubrnmpt.x 𝑥 𝜑
suprubrnmpt.b ( ( 𝜑𝑥𝐴 ) → 𝐵 ∈ ℝ )
suprubrnmpt.e ( 𝜑 → ∃ 𝑦 ∈ ℝ ∀ 𝑥𝐴 𝐵𝑦 )
Assertion suprubrnmpt ( ( 𝜑𝑥𝐴 ) → 𝐵 ≤ sup ( ran ( 𝑥𝐴𝐵 ) , ℝ , < ) )

Proof

Step Hyp Ref Expression
1 suprubrnmpt.x 𝑥 𝜑
2 suprubrnmpt.b ( ( 𝜑𝑥𝐴 ) → 𝐵 ∈ ℝ )
3 suprubrnmpt.e ( 𝜑 → ∃ 𝑦 ∈ ℝ ∀ 𝑥𝐴 𝐵𝑦 )
4 eqid ( 𝑥𝐴𝐵 ) = ( 𝑥𝐴𝐵 )
5 1 4 2 rnmptssd ( 𝜑 → ran ( 𝑥𝐴𝐵 ) ⊆ ℝ )
6 5 adantr ( ( 𝜑𝑥𝐴 ) → ran ( 𝑥𝐴𝐵 ) ⊆ ℝ )
7 simpr ( ( 𝜑𝑥𝐴 ) → 𝑥𝐴 )
8 4 elrnmpt1 ( ( 𝑥𝐴𝐵 ∈ ℝ ) → 𝐵 ∈ ran ( 𝑥𝐴𝐵 ) )
9 7 2 8 syl2anc ( ( 𝜑𝑥𝐴 ) → 𝐵 ∈ ran ( 𝑥𝐴𝐵 ) )
10 9 ne0d ( ( 𝜑𝑥𝐴 ) → ran ( 𝑥𝐴𝐵 ) ≠ ∅ )
11 1 3 rnmptbdd ( 𝜑 → ∃ 𝑦 ∈ ℝ ∀ 𝑤 ∈ ran ( 𝑥𝐴𝐵 ) 𝑤𝑦 )
12 11 adantr ( ( 𝜑𝑥𝐴 ) → ∃ 𝑦 ∈ ℝ ∀ 𝑤 ∈ ran ( 𝑥𝐴𝐵 ) 𝑤𝑦 )
13 6 10 12 9 suprubd ( ( 𝜑𝑥𝐴 ) → 𝐵 ≤ sup ( ran ( 𝑥𝐴𝐵 ) , ℝ , < ) )