| Step | 
						Hyp | 
						Ref | 
						Expression | 
					
						
							| 1 | 
							
								
							 | 
							suprubrnmpt2.x | 
							⊢ Ⅎ 𝑥 𝜑  | 
						
						
							| 2 | 
							
								
							 | 
							suprubrnmpt2.b | 
							⊢ ( ( 𝜑  ∧  𝑥  ∈  𝐴 )  →  𝐵  ∈  ℝ )  | 
						
						
							| 3 | 
							
								
							 | 
							suprubrnmpt2.l | 
							⊢ ( 𝜑  →  ∃ 𝑦  ∈  ℝ ∀ 𝑥  ∈  𝐴 𝐵  ≤  𝑦 )  | 
						
						
							| 4 | 
							
								
							 | 
							suprubrnmpt2.c | 
							⊢ ( 𝜑  →  𝐶  ∈  𝐴 )  | 
						
						
							| 5 | 
							
								
							 | 
							suprubrnmpt2.d | 
							⊢ ( 𝜑  →  𝐷  ∈  ℝ )  | 
						
						
							| 6 | 
							
								
							 | 
							suprubrnmpt2.i | 
							⊢ ( 𝑥  =  𝐶  →  𝐵  =  𝐷 )  | 
						
						
							| 7 | 
							
								
							 | 
							eqid | 
							⊢ ( 𝑥  ∈  𝐴  ↦  𝐵 )  =  ( 𝑥  ∈  𝐴  ↦  𝐵 )  | 
						
						
							| 8 | 
							
								1 7 2
							 | 
							rnmptssd | 
							⊢ ( 𝜑  →  ran  ( 𝑥  ∈  𝐴  ↦  𝐵 )  ⊆  ℝ )  | 
						
						
							| 9 | 
							
								7 6
							 | 
							elrnmpt1s | 
							⊢ ( ( 𝐶  ∈  𝐴  ∧  𝐷  ∈  ℝ )  →  𝐷  ∈  ran  ( 𝑥  ∈  𝐴  ↦  𝐵 ) )  | 
						
						
							| 10 | 
							
								4 5 9
							 | 
							syl2anc | 
							⊢ ( 𝜑  →  𝐷  ∈  ran  ( 𝑥  ∈  𝐴  ↦  𝐵 ) )  | 
						
						
							| 11 | 
							
								10
							 | 
							ne0d | 
							⊢ ( 𝜑  →  ran  ( 𝑥  ∈  𝐴  ↦  𝐵 )  ≠  ∅ )  | 
						
						
							| 12 | 
							
								1 3
							 | 
							rnmptbdd | 
							⊢ ( 𝜑  →  ∃ 𝑦  ∈  ℝ ∀ 𝑤  ∈  ran  ( 𝑥  ∈  𝐴  ↦  𝐵 ) 𝑤  ≤  𝑦 )  | 
						
						
							| 13 | 
							
								8 11 12 10
							 | 
							suprubd | 
							⊢ ( 𝜑  →  𝐷  ≤  sup ( ran  ( 𝑥  ∈  𝐴  ↦  𝐵 ) ,  ℝ ,   <  ) )  |