Step |
Hyp |
Ref |
Expression |
1 |
|
n0 |
⊢ ( 𝐴 ≠ ∅ ↔ ∃ 𝑢 𝑢 ∈ 𝐴 ) |
2 |
|
ltrelsr |
⊢ <R ⊆ ( R × R ) |
3 |
2
|
brel |
⊢ ( 𝑦 <R 𝑥 → ( 𝑦 ∈ R ∧ 𝑥 ∈ R ) ) |
4 |
3
|
simpld |
⊢ ( 𝑦 <R 𝑥 → 𝑦 ∈ R ) |
5 |
4
|
ralimi |
⊢ ( ∀ 𝑦 ∈ 𝐴 𝑦 <R 𝑥 → ∀ 𝑦 ∈ 𝐴 𝑦 ∈ R ) |
6 |
|
dfss3 |
⊢ ( 𝐴 ⊆ R ↔ ∀ 𝑦 ∈ 𝐴 𝑦 ∈ R ) |
7 |
5 6
|
sylibr |
⊢ ( ∀ 𝑦 ∈ 𝐴 𝑦 <R 𝑥 → 𝐴 ⊆ R ) |
8 |
7
|
sseld |
⊢ ( ∀ 𝑦 ∈ 𝐴 𝑦 <R 𝑥 → ( 𝑢 ∈ 𝐴 → 𝑢 ∈ R ) ) |
9 |
8
|
rexlimivw |
⊢ ( ∃ 𝑥 ∈ R ∀ 𝑦 ∈ 𝐴 𝑦 <R 𝑥 → ( 𝑢 ∈ 𝐴 → 𝑢 ∈ R ) ) |
10 |
9
|
impcom |
⊢ ( ( 𝑢 ∈ 𝐴 ∧ ∃ 𝑥 ∈ R ∀ 𝑦 ∈ 𝐴 𝑦 <R 𝑥 ) → 𝑢 ∈ R ) |
11 |
|
eleq1 |
⊢ ( 𝑢 = if ( 𝑢 ∈ R , 𝑢 , 1R ) → ( 𝑢 ∈ 𝐴 ↔ if ( 𝑢 ∈ R , 𝑢 , 1R ) ∈ 𝐴 ) ) |
12 |
11
|
anbi1d |
⊢ ( 𝑢 = if ( 𝑢 ∈ R , 𝑢 , 1R ) → ( ( 𝑢 ∈ 𝐴 ∧ ∃ 𝑥 ∈ R ∀ 𝑦 ∈ 𝐴 𝑦 <R 𝑥 ) ↔ ( if ( 𝑢 ∈ R , 𝑢 , 1R ) ∈ 𝐴 ∧ ∃ 𝑥 ∈ R ∀ 𝑦 ∈ 𝐴 𝑦 <R 𝑥 ) ) ) |
13 |
12
|
imbi1d |
⊢ ( 𝑢 = if ( 𝑢 ∈ R , 𝑢 , 1R ) → ( ( ( 𝑢 ∈ 𝐴 ∧ ∃ 𝑥 ∈ R ∀ 𝑦 ∈ 𝐴 𝑦 <R 𝑥 ) → ∃ 𝑥 ∈ R ( ∀ 𝑦 ∈ 𝐴 ¬ 𝑥 <R 𝑦 ∧ ∀ 𝑦 ∈ R ( 𝑦 <R 𝑥 → ∃ 𝑧 ∈ 𝐴 𝑦 <R 𝑧 ) ) ) ↔ ( ( if ( 𝑢 ∈ R , 𝑢 , 1R ) ∈ 𝐴 ∧ ∃ 𝑥 ∈ R ∀ 𝑦 ∈ 𝐴 𝑦 <R 𝑥 ) → ∃ 𝑥 ∈ R ( ∀ 𝑦 ∈ 𝐴 ¬ 𝑥 <R 𝑦 ∧ ∀ 𝑦 ∈ R ( 𝑦 <R 𝑥 → ∃ 𝑧 ∈ 𝐴 𝑦 <R 𝑧 ) ) ) ) ) |
14 |
|
opeq1 |
⊢ ( 𝑣 = 𝑤 → 〈 𝑣 , 1P 〉 = 〈 𝑤 , 1P 〉 ) |
15 |
14
|
eceq1d |
⊢ ( 𝑣 = 𝑤 → [ 〈 𝑣 , 1P 〉 ] ~R = [ 〈 𝑤 , 1P 〉 ] ~R ) |
16 |
15
|
oveq2d |
⊢ ( 𝑣 = 𝑤 → ( if ( 𝑢 ∈ R , 𝑢 , 1R ) +R [ 〈 𝑣 , 1P 〉 ] ~R ) = ( if ( 𝑢 ∈ R , 𝑢 , 1R ) +R [ 〈 𝑤 , 1P 〉 ] ~R ) ) |
17 |
16
|
eleq1d |
⊢ ( 𝑣 = 𝑤 → ( ( if ( 𝑢 ∈ R , 𝑢 , 1R ) +R [ 〈 𝑣 , 1P 〉 ] ~R ) ∈ 𝐴 ↔ ( if ( 𝑢 ∈ R , 𝑢 , 1R ) +R [ 〈 𝑤 , 1P 〉 ] ~R ) ∈ 𝐴 ) ) |
18 |
17
|
cbvabv |
⊢ { 𝑣 ∣ ( if ( 𝑢 ∈ R , 𝑢 , 1R ) +R [ 〈 𝑣 , 1P 〉 ] ~R ) ∈ 𝐴 } = { 𝑤 ∣ ( if ( 𝑢 ∈ R , 𝑢 , 1R ) +R [ 〈 𝑤 , 1P 〉 ] ~R ) ∈ 𝐴 } |
19 |
|
1sr |
⊢ 1R ∈ R |
20 |
19
|
elimel |
⊢ if ( 𝑢 ∈ R , 𝑢 , 1R ) ∈ R |
21 |
18 20
|
supsrlem |
⊢ ( ( if ( 𝑢 ∈ R , 𝑢 , 1R ) ∈ 𝐴 ∧ ∃ 𝑥 ∈ R ∀ 𝑦 ∈ 𝐴 𝑦 <R 𝑥 ) → ∃ 𝑥 ∈ R ( ∀ 𝑦 ∈ 𝐴 ¬ 𝑥 <R 𝑦 ∧ ∀ 𝑦 ∈ R ( 𝑦 <R 𝑥 → ∃ 𝑧 ∈ 𝐴 𝑦 <R 𝑧 ) ) ) |
22 |
13 21
|
dedth |
⊢ ( 𝑢 ∈ R → ( ( 𝑢 ∈ 𝐴 ∧ ∃ 𝑥 ∈ R ∀ 𝑦 ∈ 𝐴 𝑦 <R 𝑥 ) → ∃ 𝑥 ∈ R ( ∀ 𝑦 ∈ 𝐴 ¬ 𝑥 <R 𝑦 ∧ ∀ 𝑦 ∈ R ( 𝑦 <R 𝑥 → ∃ 𝑧 ∈ 𝐴 𝑦 <R 𝑧 ) ) ) ) |
23 |
10 22
|
mpcom |
⊢ ( ( 𝑢 ∈ 𝐴 ∧ ∃ 𝑥 ∈ R ∀ 𝑦 ∈ 𝐴 𝑦 <R 𝑥 ) → ∃ 𝑥 ∈ R ( ∀ 𝑦 ∈ 𝐴 ¬ 𝑥 <R 𝑦 ∧ ∀ 𝑦 ∈ R ( 𝑦 <R 𝑥 → ∃ 𝑧 ∈ 𝐴 𝑦 <R 𝑧 ) ) ) |
24 |
23
|
ex |
⊢ ( 𝑢 ∈ 𝐴 → ( ∃ 𝑥 ∈ R ∀ 𝑦 ∈ 𝐴 𝑦 <R 𝑥 → ∃ 𝑥 ∈ R ( ∀ 𝑦 ∈ 𝐴 ¬ 𝑥 <R 𝑦 ∧ ∀ 𝑦 ∈ R ( 𝑦 <R 𝑥 → ∃ 𝑧 ∈ 𝐴 𝑦 <R 𝑧 ) ) ) ) |
25 |
24
|
exlimiv |
⊢ ( ∃ 𝑢 𝑢 ∈ 𝐴 → ( ∃ 𝑥 ∈ R ∀ 𝑦 ∈ 𝐴 𝑦 <R 𝑥 → ∃ 𝑥 ∈ R ( ∀ 𝑦 ∈ 𝐴 ¬ 𝑥 <R 𝑦 ∧ ∀ 𝑦 ∈ R ( 𝑦 <R 𝑥 → ∃ 𝑧 ∈ 𝐴 𝑦 <R 𝑧 ) ) ) ) |
26 |
1 25
|
sylbi |
⊢ ( 𝐴 ≠ ∅ → ( ∃ 𝑥 ∈ R ∀ 𝑦 ∈ 𝐴 𝑦 <R 𝑥 → ∃ 𝑥 ∈ R ( ∀ 𝑦 ∈ 𝐴 ¬ 𝑥 <R 𝑦 ∧ ∀ 𝑦 ∈ R ( 𝑦 <R 𝑥 → ∃ 𝑧 ∈ 𝐴 𝑦 <R 𝑧 ) ) ) ) |
27 |
26
|
imp |
⊢ ( ( 𝐴 ≠ ∅ ∧ ∃ 𝑥 ∈ R ∀ 𝑦 ∈ 𝐴 𝑦 <R 𝑥 ) → ∃ 𝑥 ∈ R ( ∀ 𝑦 ∈ 𝐴 ¬ 𝑥 <R 𝑦 ∧ ∀ 𝑦 ∈ R ( 𝑦 <R 𝑥 → ∃ 𝑧 ∈ 𝐴 𝑦 <R 𝑧 ) ) ) |