Step |
Hyp |
Ref |
Expression |
1 |
|
supsrlem.1 |
⊢ 𝐵 = { 𝑤 ∣ ( 𝐶 +R [ 〈 𝑤 , 1P 〉 ] ~R ) ∈ 𝐴 } |
2 |
|
supsrlem.2 |
⊢ 𝐶 ∈ R |
3 |
|
0idsr |
⊢ ( 𝐶 ∈ R → ( 𝐶 +R 0R ) = 𝐶 ) |
4 |
2 3
|
mp1i |
⊢ ( ( 𝐶 ∈ 𝐴 ∧ ∃ 𝑥 ∈ R ∀ 𝑦 ∈ 𝐴 𝑦 <R 𝑥 ) → ( 𝐶 +R 0R ) = 𝐶 ) |
5 |
|
simpl |
⊢ ( ( 𝐶 ∈ 𝐴 ∧ ∃ 𝑥 ∈ R ∀ 𝑦 ∈ 𝐴 𝑦 <R 𝑥 ) → 𝐶 ∈ 𝐴 ) |
6 |
4 5
|
eqeltrd |
⊢ ( ( 𝐶 ∈ 𝐴 ∧ ∃ 𝑥 ∈ R ∀ 𝑦 ∈ 𝐴 𝑦 <R 𝑥 ) → ( 𝐶 +R 0R ) ∈ 𝐴 ) |
7 |
|
1pr |
⊢ 1P ∈ P |
8 |
7
|
elexi |
⊢ 1P ∈ V |
9 |
|
opeq1 |
⊢ ( 𝑤 = 1P → 〈 𝑤 , 1P 〉 = 〈 1P , 1P 〉 ) |
10 |
9
|
eceq1d |
⊢ ( 𝑤 = 1P → [ 〈 𝑤 , 1P 〉 ] ~R = [ 〈 1P , 1P 〉 ] ~R ) |
11 |
|
df-0r |
⊢ 0R = [ 〈 1P , 1P 〉 ] ~R |
12 |
10 11
|
eqtr4di |
⊢ ( 𝑤 = 1P → [ 〈 𝑤 , 1P 〉 ] ~R = 0R ) |
13 |
12
|
oveq2d |
⊢ ( 𝑤 = 1P → ( 𝐶 +R [ 〈 𝑤 , 1P 〉 ] ~R ) = ( 𝐶 +R 0R ) ) |
14 |
13
|
eleq1d |
⊢ ( 𝑤 = 1P → ( ( 𝐶 +R [ 〈 𝑤 , 1P 〉 ] ~R ) ∈ 𝐴 ↔ ( 𝐶 +R 0R ) ∈ 𝐴 ) ) |
15 |
8 14 1
|
elab2 |
⊢ ( 1P ∈ 𝐵 ↔ ( 𝐶 +R 0R ) ∈ 𝐴 ) |
16 |
6 15
|
sylibr |
⊢ ( ( 𝐶 ∈ 𝐴 ∧ ∃ 𝑥 ∈ R ∀ 𝑦 ∈ 𝐴 𝑦 <R 𝑥 ) → 1P ∈ 𝐵 ) |
17 |
16
|
ne0d |
⊢ ( ( 𝐶 ∈ 𝐴 ∧ ∃ 𝑥 ∈ R ∀ 𝑦 ∈ 𝐴 𝑦 <R 𝑥 ) → 𝐵 ≠ ∅ ) |
18 |
|
breq1 |
⊢ ( 𝑦 = 𝐶 → ( 𝑦 <R 𝑥 ↔ 𝐶 <R 𝑥 ) ) |
19 |
18
|
rspccv |
⊢ ( ∀ 𝑦 ∈ 𝐴 𝑦 <R 𝑥 → ( 𝐶 ∈ 𝐴 → 𝐶 <R 𝑥 ) ) |
20 |
|
0lt1sr |
⊢ 0R <R 1R |
21 |
|
m1r |
⊢ -1R ∈ R |
22 |
|
ltasr |
⊢ ( -1R ∈ R → ( 0R <R 1R ↔ ( -1R +R 0R ) <R ( -1R +R 1R ) ) ) |
23 |
21 22
|
ax-mp |
⊢ ( 0R <R 1R ↔ ( -1R +R 0R ) <R ( -1R +R 1R ) ) |
24 |
20 23
|
mpbi |
⊢ ( -1R +R 0R ) <R ( -1R +R 1R ) |
25 |
|
0idsr |
⊢ ( -1R ∈ R → ( -1R +R 0R ) = -1R ) |
26 |
21 25
|
ax-mp |
⊢ ( -1R +R 0R ) = -1R |
27 |
|
m1p1sr |
⊢ ( -1R +R 1R ) = 0R |
28 |
24 26 27
|
3brtr3i |
⊢ -1R <R 0R |
29 |
|
ltasr |
⊢ ( 𝐶 ∈ R → ( -1R <R 0R ↔ ( 𝐶 +R -1R ) <R ( 𝐶 +R 0R ) ) ) |
30 |
2 29
|
ax-mp |
⊢ ( -1R <R 0R ↔ ( 𝐶 +R -1R ) <R ( 𝐶 +R 0R ) ) |
31 |
28 30
|
mpbi |
⊢ ( 𝐶 +R -1R ) <R ( 𝐶 +R 0R ) |
32 |
2 3
|
ax-mp |
⊢ ( 𝐶 +R 0R ) = 𝐶 |
33 |
31 32
|
breqtri |
⊢ ( 𝐶 +R -1R ) <R 𝐶 |
34 |
|
ltsosr |
⊢ <R Or R |
35 |
|
ltrelsr |
⊢ <R ⊆ ( R × R ) |
36 |
34 35
|
sotri |
⊢ ( ( ( 𝐶 +R -1R ) <R 𝐶 ∧ 𝐶 <R 𝑥 ) → ( 𝐶 +R -1R ) <R 𝑥 ) |
37 |
33 36
|
mpan |
⊢ ( 𝐶 <R 𝑥 → ( 𝐶 +R -1R ) <R 𝑥 ) |
38 |
2
|
map2psrpr |
⊢ ( ( 𝐶 +R -1R ) <R 𝑥 ↔ ∃ 𝑣 ∈ P ( 𝐶 +R [ 〈 𝑣 , 1P 〉 ] ~R ) = 𝑥 ) |
39 |
37 38
|
sylib |
⊢ ( 𝐶 <R 𝑥 → ∃ 𝑣 ∈ P ( 𝐶 +R [ 〈 𝑣 , 1P 〉 ] ~R ) = 𝑥 ) |
40 |
19 39
|
syl6 |
⊢ ( ∀ 𝑦 ∈ 𝐴 𝑦 <R 𝑥 → ( 𝐶 ∈ 𝐴 → ∃ 𝑣 ∈ P ( 𝐶 +R [ 〈 𝑣 , 1P 〉 ] ~R ) = 𝑥 ) ) |
41 |
|
breq2 |
⊢ ( ( 𝐶 +R [ 〈 𝑣 , 1P 〉 ] ~R ) = 𝑥 → ( 𝑦 <R ( 𝐶 +R [ 〈 𝑣 , 1P 〉 ] ~R ) ↔ 𝑦 <R 𝑥 ) ) |
42 |
41
|
ralbidv |
⊢ ( ( 𝐶 +R [ 〈 𝑣 , 1P 〉 ] ~R ) = 𝑥 → ( ∀ 𝑦 ∈ 𝐴 𝑦 <R ( 𝐶 +R [ 〈 𝑣 , 1P 〉 ] ~R ) ↔ ∀ 𝑦 ∈ 𝐴 𝑦 <R 𝑥 ) ) |
43 |
1
|
abeq2i |
⊢ ( 𝑤 ∈ 𝐵 ↔ ( 𝐶 +R [ 〈 𝑤 , 1P 〉 ] ~R ) ∈ 𝐴 ) |
44 |
|
breq1 |
⊢ ( 𝑦 = ( 𝐶 +R [ 〈 𝑤 , 1P 〉 ] ~R ) → ( 𝑦 <R ( 𝐶 +R [ 〈 𝑣 , 1P 〉 ] ~R ) ↔ ( 𝐶 +R [ 〈 𝑤 , 1P 〉 ] ~R ) <R ( 𝐶 +R [ 〈 𝑣 , 1P 〉 ] ~R ) ) ) |
45 |
44
|
rspccv |
⊢ ( ∀ 𝑦 ∈ 𝐴 𝑦 <R ( 𝐶 +R [ 〈 𝑣 , 1P 〉 ] ~R ) → ( ( 𝐶 +R [ 〈 𝑤 , 1P 〉 ] ~R ) ∈ 𝐴 → ( 𝐶 +R [ 〈 𝑤 , 1P 〉 ] ~R ) <R ( 𝐶 +R [ 〈 𝑣 , 1P 〉 ] ~R ) ) ) |
46 |
2
|
ltpsrpr |
⊢ ( ( 𝐶 +R [ 〈 𝑤 , 1P 〉 ] ~R ) <R ( 𝐶 +R [ 〈 𝑣 , 1P 〉 ] ~R ) ↔ 𝑤 <P 𝑣 ) |
47 |
45 46
|
syl6ib |
⊢ ( ∀ 𝑦 ∈ 𝐴 𝑦 <R ( 𝐶 +R [ 〈 𝑣 , 1P 〉 ] ~R ) → ( ( 𝐶 +R [ 〈 𝑤 , 1P 〉 ] ~R ) ∈ 𝐴 → 𝑤 <P 𝑣 ) ) |
48 |
43 47
|
syl5bi |
⊢ ( ∀ 𝑦 ∈ 𝐴 𝑦 <R ( 𝐶 +R [ 〈 𝑣 , 1P 〉 ] ~R ) → ( 𝑤 ∈ 𝐵 → 𝑤 <P 𝑣 ) ) |
49 |
48
|
ralrimiv |
⊢ ( ∀ 𝑦 ∈ 𝐴 𝑦 <R ( 𝐶 +R [ 〈 𝑣 , 1P 〉 ] ~R ) → ∀ 𝑤 ∈ 𝐵 𝑤 <P 𝑣 ) |
50 |
42 49
|
syl6bir |
⊢ ( ( 𝐶 +R [ 〈 𝑣 , 1P 〉 ] ~R ) = 𝑥 → ( ∀ 𝑦 ∈ 𝐴 𝑦 <R 𝑥 → ∀ 𝑤 ∈ 𝐵 𝑤 <P 𝑣 ) ) |
51 |
50
|
com12 |
⊢ ( ∀ 𝑦 ∈ 𝐴 𝑦 <R 𝑥 → ( ( 𝐶 +R [ 〈 𝑣 , 1P 〉 ] ~R ) = 𝑥 → ∀ 𝑤 ∈ 𝐵 𝑤 <P 𝑣 ) ) |
52 |
51
|
reximdv |
⊢ ( ∀ 𝑦 ∈ 𝐴 𝑦 <R 𝑥 → ( ∃ 𝑣 ∈ P ( 𝐶 +R [ 〈 𝑣 , 1P 〉 ] ~R ) = 𝑥 → ∃ 𝑣 ∈ P ∀ 𝑤 ∈ 𝐵 𝑤 <P 𝑣 ) ) |
53 |
40 52
|
syld |
⊢ ( ∀ 𝑦 ∈ 𝐴 𝑦 <R 𝑥 → ( 𝐶 ∈ 𝐴 → ∃ 𝑣 ∈ P ∀ 𝑤 ∈ 𝐵 𝑤 <P 𝑣 ) ) |
54 |
53
|
rexlimivw |
⊢ ( ∃ 𝑥 ∈ R ∀ 𝑦 ∈ 𝐴 𝑦 <R 𝑥 → ( 𝐶 ∈ 𝐴 → ∃ 𝑣 ∈ P ∀ 𝑤 ∈ 𝐵 𝑤 <P 𝑣 ) ) |
55 |
54
|
impcom |
⊢ ( ( 𝐶 ∈ 𝐴 ∧ ∃ 𝑥 ∈ R ∀ 𝑦 ∈ 𝐴 𝑦 <R 𝑥 ) → ∃ 𝑣 ∈ P ∀ 𝑤 ∈ 𝐵 𝑤 <P 𝑣 ) |
56 |
|
supexpr |
⊢ ( ( 𝐵 ≠ ∅ ∧ ∃ 𝑣 ∈ P ∀ 𝑤 ∈ 𝐵 𝑤 <P 𝑣 ) → ∃ 𝑣 ∈ P ( ∀ 𝑤 ∈ 𝐵 ¬ 𝑣 <P 𝑤 ∧ ∀ 𝑤 ∈ P ( 𝑤 <P 𝑣 → ∃ 𝑢 ∈ 𝐵 𝑤 <P 𝑢 ) ) ) |
57 |
17 55 56
|
syl2anc |
⊢ ( ( 𝐶 ∈ 𝐴 ∧ ∃ 𝑥 ∈ R ∀ 𝑦 ∈ 𝐴 𝑦 <R 𝑥 ) → ∃ 𝑣 ∈ P ( ∀ 𝑤 ∈ 𝐵 ¬ 𝑣 <P 𝑤 ∧ ∀ 𝑤 ∈ P ( 𝑤 <P 𝑣 → ∃ 𝑢 ∈ 𝐵 𝑤 <P 𝑢 ) ) ) |
58 |
2
|
mappsrpr |
⊢ ( ( 𝐶 +R -1R ) <R ( 𝐶 +R [ 〈 𝑣 , 1P 〉 ] ~R ) ↔ 𝑣 ∈ P ) |
59 |
35
|
brel |
⊢ ( ( 𝐶 +R -1R ) <R ( 𝐶 +R [ 〈 𝑣 , 1P 〉 ] ~R ) → ( ( 𝐶 +R -1R ) ∈ R ∧ ( 𝐶 +R [ 〈 𝑣 , 1P 〉 ] ~R ) ∈ R ) ) |
60 |
58 59
|
sylbir |
⊢ ( 𝑣 ∈ P → ( ( 𝐶 +R -1R ) ∈ R ∧ ( 𝐶 +R [ 〈 𝑣 , 1P 〉 ] ~R ) ∈ R ) ) |
61 |
60
|
simprd |
⊢ ( 𝑣 ∈ P → ( 𝐶 +R [ 〈 𝑣 , 1P 〉 ] ~R ) ∈ R ) |
62 |
61
|
adantl |
⊢ ( ( ( 𝐶 ∈ 𝐴 ∧ ∃ 𝑥 ∈ R ∀ 𝑦 ∈ 𝐴 𝑦 <R 𝑥 ) ∧ 𝑣 ∈ P ) → ( 𝐶 +R [ 〈 𝑣 , 1P 〉 ] ~R ) ∈ R ) |
63 |
34 35
|
sotri |
⊢ ( ( ( 𝐶 +R -1R ) <R ( 𝐶 +R [ 〈 𝑣 , 1P 〉 ] ~R ) ∧ ( 𝐶 +R [ 〈 𝑣 , 1P 〉 ] ~R ) <R 𝑦 ) → ( 𝐶 +R -1R ) <R 𝑦 ) |
64 |
58 63
|
sylanbr |
⊢ ( ( 𝑣 ∈ P ∧ ( 𝐶 +R [ 〈 𝑣 , 1P 〉 ] ~R ) <R 𝑦 ) → ( 𝐶 +R -1R ) <R 𝑦 ) |
65 |
2
|
map2psrpr |
⊢ ( ( 𝐶 +R -1R ) <R 𝑦 ↔ ∃ 𝑤 ∈ P ( 𝐶 +R [ 〈 𝑤 , 1P 〉 ] ~R ) = 𝑦 ) |
66 |
64 65
|
sylib |
⊢ ( ( 𝑣 ∈ P ∧ ( 𝐶 +R [ 〈 𝑣 , 1P 〉 ] ~R ) <R 𝑦 ) → ∃ 𝑤 ∈ P ( 𝐶 +R [ 〈 𝑤 , 1P 〉 ] ~R ) = 𝑦 ) |
67 |
|
rexex |
⊢ ( ∃ 𝑤 ∈ P ( 𝐶 +R [ 〈 𝑤 , 1P 〉 ] ~R ) = 𝑦 → ∃ 𝑤 ( 𝐶 +R [ 〈 𝑤 , 1P 〉 ] ~R ) = 𝑦 ) |
68 |
|
df-ral |
⊢ ( ∀ 𝑤 ∈ 𝐵 ¬ 𝑣 <P 𝑤 ↔ ∀ 𝑤 ( 𝑤 ∈ 𝐵 → ¬ 𝑣 <P 𝑤 ) ) |
69 |
|
19.29 |
⊢ ( ( ∀ 𝑤 ( 𝑤 ∈ 𝐵 → ¬ 𝑣 <P 𝑤 ) ∧ ∃ 𝑤 ( 𝐶 +R [ 〈 𝑤 , 1P 〉 ] ~R ) = 𝑦 ) → ∃ 𝑤 ( ( 𝑤 ∈ 𝐵 → ¬ 𝑣 <P 𝑤 ) ∧ ( 𝐶 +R [ 〈 𝑤 , 1P 〉 ] ~R ) = 𝑦 ) ) |
70 |
|
eleq1 |
⊢ ( ( 𝐶 +R [ 〈 𝑤 , 1P 〉 ] ~R ) = 𝑦 → ( ( 𝐶 +R [ 〈 𝑤 , 1P 〉 ] ~R ) ∈ 𝐴 ↔ 𝑦 ∈ 𝐴 ) ) |
71 |
43 70
|
syl5bb |
⊢ ( ( 𝐶 +R [ 〈 𝑤 , 1P 〉 ] ~R ) = 𝑦 → ( 𝑤 ∈ 𝐵 ↔ 𝑦 ∈ 𝐴 ) ) |
72 |
2
|
ltpsrpr |
⊢ ( ( 𝐶 +R [ 〈 𝑣 , 1P 〉 ] ~R ) <R ( 𝐶 +R [ 〈 𝑤 , 1P 〉 ] ~R ) ↔ 𝑣 <P 𝑤 ) |
73 |
|
breq2 |
⊢ ( ( 𝐶 +R [ 〈 𝑤 , 1P 〉 ] ~R ) = 𝑦 → ( ( 𝐶 +R [ 〈 𝑣 , 1P 〉 ] ~R ) <R ( 𝐶 +R [ 〈 𝑤 , 1P 〉 ] ~R ) ↔ ( 𝐶 +R [ 〈 𝑣 , 1P 〉 ] ~R ) <R 𝑦 ) ) |
74 |
72 73
|
bitr3id |
⊢ ( ( 𝐶 +R [ 〈 𝑤 , 1P 〉 ] ~R ) = 𝑦 → ( 𝑣 <P 𝑤 ↔ ( 𝐶 +R [ 〈 𝑣 , 1P 〉 ] ~R ) <R 𝑦 ) ) |
75 |
74
|
notbid |
⊢ ( ( 𝐶 +R [ 〈 𝑤 , 1P 〉 ] ~R ) = 𝑦 → ( ¬ 𝑣 <P 𝑤 ↔ ¬ ( 𝐶 +R [ 〈 𝑣 , 1P 〉 ] ~R ) <R 𝑦 ) ) |
76 |
71 75
|
imbi12d |
⊢ ( ( 𝐶 +R [ 〈 𝑤 , 1P 〉 ] ~R ) = 𝑦 → ( ( 𝑤 ∈ 𝐵 → ¬ 𝑣 <P 𝑤 ) ↔ ( 𝑦 ∈ 𝐴 → ¬ ( 𝐶 +R [ 〈 𝑣 , 1P 〉 ] ~R ) <R 𝑦 ) ) ) |
77 |
76
|
biimpac |
⊢ ( ( ( 𝑤 ∈ 𝐵 → ¬ 𝑣 <P 𝑤 ) ∧ ( 𝐶 +R [ 〈 𝑤 , 1P 〉 ] ~R ) = 𝑦 ) → ( 𝑦 ∈ 𝐴 → ¬ ( 𝐶 +R [ 〈 𝑣 , 1P 〉 ] ~R ) <R 𝑦 ) ) |
78 |
77
|
exlimiv |
⊢ ( ∃ 𝑤 ( ( 𝑤 ∈ 𝐵 → ¬ 𝑣 <P 𝑤 ) ∧ ( 𝐶 +R [ 〈 𝑤 , 1P 〉 ] ~R ) = 𝑦 ) → ( 𝑦 ∈ 𝐴 → ¬ ( 𝐶 +R [ 〈 𝑣 , 1P 〉 ] ~R ) <R 𝑦 ) ) |
79 |
69 78
|
syl |
⊢ ( ( ∀ 𝑤 ( 𝑤 ∈ 𝐵 → ¬ 𝑣 <P 𝑤 ) ∧ ∃ 𝑤 ( 𝐶 +R [ 〈 𝑤 , 1P 〉 ] ~R ) = 𝑦 ) → ( 𝑦 ∈ 𝐴 → ¬ ( 𝐶 +R [ 〈 𝑣 , 1P 〉 ] ~R ) <R 𝑦 ) ) |
80 |
68 79
|
sylanb |
⊢ ( ( ∀ 𝑤 ∈ 𝐵 ¬ 𝑣 <P 𝑤 ∧ ∃ 𝑤 ( 𝐶 +R [ 〈 𝑤 , 1P 〉 ] ~R ) = 𝑦 ) → ( 𝑦 ∈ 𝐴 → ¬ ( 𝐶 +R [ 〈 𝑣 , 1P 〉 ] ~R ) <R 𝑦 ) ) |
81 |
80
|
expcom |
⊢ ( ∃ 𝑤 ( 𝐶 +R [ 〈 𝑤 , 1P 〉 ] ~R ) = 𝑦 → ( ∀ 𝑤 ∈ 𝐵 ¬ 𝑣 <P 𝑤 → ( 𝑦 ∈ 𝐴 → ¬ ( 𝐶 +R [ 〈 𝑣 , 1P 〉 ] ~R ) <R 𝑦 ) ) ) |
82 |
66 67 81
|
3syl |
⊢ ( ( 𝑣 ∈ P ∧ ( 𝐶 +R [ 〈 𝑣 , 1P 〉 ] ~R ) <R 𝑦 ) → ( ∀ 𝑤 ∈ 𝐵 ¬ 𝑣 <P 𝑤 → ( 𝑦 ∈ 𝐴 → ¬ ( 𝐶 +R [ 〈 𝑣 , 1P 〉 ] ~R ) <R 𝑦 ) ) ) |
83 |
82
|
impd |
⊢ ( ( 𝑣 ∈ P ∧ ( 𝐶 +R [ 〈 𝑣 , 1P 〉 ] ~R ) <R 𝑦 ) → ( ( ∀ 𝑤 ∈ 𝐵 ¬ 𝑣 <P 𝑤 ∧ 𝑦 ∈ 𝐴 ) → ¬ ( 𝐶 +R [ 〈 𝑣 , 1P 〉 ] ~R ) <R 𝑦 ) ) |
84 |
83
|
impancom |
⊢ ( ( 𝑣 ∈ P ∧ ( ∀ 𝑤 ∈ 𝐵 ¬ 𝑣 <P 𝑤 ∧ 𝑦 ∈ 𝐴 ) ) → ( ( 𝐶 +R [ 〈 𝑣 , 1P 〉 ] ~R ) <R 𝑦 → ¬ ( 𝐶 +R [ 〈 𝑣 , 1P 〉 ] ~R ) <R 𝑦 ) ) |
85 |
84
|
pm2.01d |
⊢ ( ( 𝑣 ∈ P ∧ ( ∀ 𝑤 ∈ 𝐵 ¬ 𝑣 <P 𝑤 ∧ 𝑦 ∈ 𝐴 ) ) → ¬ ( 𝐶 +R [ 〈 𝑣 , 1P 〉 ] ~R ) <R 𝑦 ) |
86 |
85
|
expr |
⊢ ( ( 𝑣 ∈ P ∧ ∀ 𝑤 ∈ 𝐵 ¬ 𝑣 <P 𝑤 ) → ( 𝑦 ∈ 𝐴 → ¬ ( 𝐶 +R [ 〈 𝑣 , 1P 〉 ] ~R ) <R 𝑦 ) ) |
87 |
86
|
ralrimiv |
⊢ ( ( 𝑣 ∈ P ∧ ∀ 𝑤 ∈ 𝐵 ¬ 𝑣 <P 𝑤 ) → ∀ 𝑦 ∈ 𝐴 ¬ ( 𝐶 +R [ 〈 𝑣 , 1P 〉 ] ~R ) <R 𝑦 ) |
88 |
87
|
ex |
⊢ ( 𝑣 ∈ P → ( ∀ 𝑤 ∈ 𝐵 ¬ 𝑣 <P 𝑤 → ∀ 𝑦 ∈ 𝐴 ¬ ( 𝐶 +R [ 〈 𝑣 , 1P 〉 ] ~R ) <R 𝑦 ) ) |
89 |
88
|
adantl |
⊢ ( ( ( 𝐶 ∈ 𝐴 ∧ ∃ 𝑥 ∈ R ∀ 𝑦 ∈ 𝐴 𝑦 <R 𝑥 ) ∧ 𝑣 ∈ P ) → ( ∀ 𝑤 ∈ 𝐵 ¬ 𝑣 <P 𝑤 → ∀ 𝑦 ∈ 𝐴 ¬ ( 𝐶 +R [ 〈 𝑣 , 1P 〉 ] ~R ) <R 𝑦 ) ) |
90 |
|
r19.29 |
⊢ ( ( ∀ 𝑤 ∈ P ( 𝑤 <P 𝑣 → ∃ 𝑢 ∈ 𝐵 𝑤 <P 𝑢 ) ∧ ∃ 𝑤 ∈ P ( 𝐶 +R [ 〈 𝑤 , 1P 〉 ] ~R ) = 𝑦 ) → ∃ 𝑤 ∈ P ( ( 𝑤 <P 𝑣 → ∃ 𝑢 ∈ 𝐵 𝑤 <P 𝑢 ) ∧ ( 𝐶 +R [ 〈 𝑤 , 1P 〉 ] ~R ) = 𝑦 ) ) |
91 |
|
breq1 |
⊢ ( ( 𝐶 +R [ 〈 𝑤 , 1P 〉 ] ~R ) = 𝑦 → ( ( 𝐶 +R [ 〈 𝑤 , 1P 〉 ] ~R ) <R ( 𝐶 +R [ 〈 𝑣 , 1P 〉 ] ~R ) ↔ 𝑦 <R ( 𝐶 +R [ 〈 𝑣 , 1P 〉 ] ~R ) ) ) |
92 |
46 91
|
bitr3id |
⊢ ( ( 𝐶 +R [ 〈 𝑤 , 1P 〉 ] ~R ) = 𝑦 → ( 𝑤 <P 𝑣 ↔ 𝑦 <R ( 𝐶 +R [ 〈 𝑣 , 1P 〉 ] ~R ) ) ) |
93 |
92
|
biimprd |
⊢ ( ( 𝐶 +R [ 〈 𝑤 , 1P 〉 ] ~R ) = 𝑦 → ( 𝑦 <R ( 𝐶 +R [ 〈 𝑣 , 1P 〉 ] ~R ) → 𝑤 <P 𝑣 ) ) |
94 |
|
vex |
⊢ 𝑢 ∈ V |
95 |
|
opeq1 |
⊢ ( 𝑤 = 𝑢 → 〈 𝑤 , 1P 〉 = 〈 𝑢 , 1P 〉 ) |
96 |
95
|
eceq1d |
⊢ ( 𝑤 = 𝑢 → [ 〈 𝑤 , 1P 〉 ] ~R = [ 〈 𝑢 , 1P 〉 ] ~R ) |
97 |
96
|
oveq2d |
⊢ ( 𝑤 = 𝑢 → ( 𝐶 +R [ 〈 𝑤 , 1P 〉 ] ~R ) = ( 𝐶 +R [ 〈 𝑢 , 1P 〉 ] ~R ) ) |
98 |
97
|
eleq1d |
⊢ ( 𝑤 = 𝑢 → ( ( 𝐶 +R [ 〈 𝑤 , 1P 〉 ] ~R ) ∈ 𝐴 ↔ ( 𝐶 +R [ 〈 𝑢 , 1P 〉 ] ~R ) ∈ 𝐴 ) ) |
99 |
94 98 1
|
elab2 |
⊢ ( 𝑢 ∈ 𝐵 ↔ ( 𝐶 +R [ 〈 𝑢 , 1P 〉 ] ~R ) ∈ 𝐴 ) |
100 |
|
breq2 |
⊢ ( 𝑧 = ( 𝐶 +R [ 〈 𝑢 , 1P 〉 ] ~R ) → ( ( 𝐶 +R [ 〈 𝑤 , 1P 〉 ] ~R ) <R 𝑧 ↔ ( 𝐶 +R [ 〈 𝑤 , 1P 〉 ] ~R ) <R ( 𝐶 +R [ 〈 𝑢 , 1P 〉 ] ~R ) ) ) |
101 |
2
|
ltpsrpr |
⊢ ( ( 𝐶 +R [ 〈 𝑤 , 1P 〉 ] ~R ) <R ( 𝐶 +R [ 〈 𝑢 , 1P 〉 ] ~R ) ↔ 𝑤 <P 𝑢 ) |
102 |
100 101
|
bitrdi |
⊢ ( 𝑧 = ( 𝐶 +R [ 〈 𝑢 , 1P 〉 ] ~R ) → ( ( 𝐶 +R [ 〈 𝑤 , 1P 〉 ] ~R ) <R 𝑧 ↔ 𝑤 <P 𝑢 ) ) |
103 |
102
|
rspcev |
⊢ ( ( ( 𝐶 +R [ 〈 𝑢 , 1P 〉 ] ~R ) ∈ 𝐴 ∧ 𝑤 <P 𝑢 ) → ∃ 𝑧 ∈ 𝐴 ( 𝐶 +R [ 〈 𝑤 , 1P 〉 ] ~R ) <R 𝑧 ) |
104 |
99 103
|
sylanb |
⊢ ( ( 𝑢 ∈ 𝐵 ∧ 𝑤 <P 𝑢 ) → ∃ 𝑧 ∈ 𝐴 ( 𝐶 +R [ 〈 𝑤 , 1P 〉 ] ~R ) <R 𝑧 ) |
105 |
104
|
rexlimiva |
⊢ ( ∃ 𝑢 ∈ 𝐵 𝑤 <P 𝑢 → ∃ 𝑧 ∈ 𝐴 ( 𝐶 +R [ 〈 𝑤 , 1P 〉 ] ~R ) <R 𝑧 ) |
106 |
|
breq1 |
⊢ ( ( 𝐶 +R [ 〈 𝑤 , 1P 〉 ] ~R ) = 𝑦 → ( ( 𝐶 +R [ 〈 𝑤 , 1P 〉 ] ~R ) <R 𝑧 ↔ 𝑦 <R 𝑧 ) ) |
107 |
106
|
rexbidv |
⊢ ( ( 𝐶 +R [ 〈 𝑤 , 1P 〉 ] ~R ) = 𝑦 → ( ∃ 𝑧 ∈ 𝐴 ( 𝐶 +R [ 〈 𝑤 , 1P 〉 ] ~R ) <R 𝑧 ↔ ∃ 𝑧 ∈ 𝐴 𝑦 <R 𝑧 ) ) |
108 |
105 107
|
syl5ib |
⊢ ( ( 𝐶 +R [ 〈 𝑤 , 1P 〉 ] ~R ) = 𝑦 → ( ∃ 𝑢 ∈ 𝐵 𝑤 <P 𝑢 → ∃ 𝑧 ∈ 𝐴 𝑦 <R 𝑧 ) ) |
109 |
93 108
|
imim12d |
⊢ ( ( 𝐶 +R [ 〈 𝑤 , 1P 〉 ] ~R ) = 𝑦 → ( ( 𝑤 <P 𝑣 → ∃ 𝑢 ∈ 𝐵 𝑤 <P 𝑢 ) → ( 𝑦 <R ( 𝐶 +R [ 〈 𝑣 , 1P 〉 ] ~R ) → ∃ 𝑧 ∈ 𝐴 𝑦 <R 𝑧 ) ) ) |
110 |
109
|
impcom |
⊢ ( ( ( 𝑤 <P 𝑣 → ∃ 𝑢 ∈ 𝐵 𝑤 <P 𝑢 ) ∧ ( 𝐶 +R [ 〈 𝑤 , 1P 〉 ] ~R ) = 𝑦 ) → ( 𝑦 <R ( 𝐶 +R [ 〈 𝑣 , 1P 〉 ] ~R ) → ∃ 𝑧 ∈ 𝐴 𝑦 <R 𝑧 ) ) |
111 |
110
|
rexlimivw |
⊢ ( ∃ 𝑤 ∈ P ( ( 𝑤 <P 𝑣 → ∃ 𝑢 ∈ 𝐵 𝑤 <P 𝑢 ) ∧ ( 𝐶 +R [ 〈 𝑤 , 1P 〉 ] ~R ) = 𝑦 ) → ( 𝑦 <R ( 𝐶 +R [ 〈 𝑣 , 1P 〉 ] ~R ) → ∃ 𝑧 ∈ 𝐴 𝑦 <R 𝑧 ) ) |
112 |
90 111
|
syl |
⊢ ( ( ∀ 𝑤 ∈ P ( 𝑤 <P 𝑣 → ∃ 𝑢 ∈ 𝐵 𝑤 <P 𝑢 ) ∧ ∃ 𝑤 ∈ P ( 𝐶 +R [ 〈 𝑤 , 1P 〉 ] ~R ) = 𝑦 ) → ( 𝑦 <R ( 𝐶 +R [ 〈 𝑣 , 1P 〉 ] ~R ) → ∃ 𝑧 ∈ 𝐴 𝑦 <R 𝑧 ) ) |
113 |
65 112
|
sylan2b |
⊢ ( ( ∀ 𝑤 ∈ P ( 𝑤 <P 𝑣 → ∃ 𝑢 ∈ 𝐵 𝑤 <P 𝑢 ) ∧ ( 𝐶 +R -1R ) <R 𝑦 ) → ( 𝑦 <R ( 𝐶 +R [ 〈 𝑣 , 1P 〉 ] ~R ) → ∃ 𝑧 ∈ 𝐴 𝑦 <R 𝑧 ) ) |
114 |
113
|
ex |
⊢ ( ∀ 𝑤 ∈ P ( 𝑤 <P 𝑣 → ∃ 𝑢 ∈ 𝐵 𝑤 <P 𝑢 ) → ( ( 𝐶 +R -1R ) <R 𝑦 → ( 𝑦 <R ( 𝐶 +R [ 〈 𝑣 , 1P 〉 ] ~R ) → ∃ 𝑧 ∈ 𝐴 𝑦 <R 𝑧 ) ) ) |
115 |
114
|
adantl |
⊢ ( ( ( 𝐶 ∈ 𝐴 ∧ 𝑣 ∈ P ) ∧ ∀ 𝑤 ∈ P ( 𝑤 <P 𝑣 → ∃ 𝑢 ∈ 𝐵 𝑤 <P 𝑢 ) ) → ( ( 𝐶 +R -1R ) <R 𝑦 → ( 𝑦 <R ( 𝐶 +R [ 〈 𝑣 , 1P 〉 ] ~R ) → ∃ 𝑧 ∈ 𝐴 𝑦 <R 𝑧 ) ) ) |
116 |
115
|
a1dd |
⊢ ( ( ( 𝐶 ∈ 𝐴 ∧ 𝑣 ∈ P ) ∧ ∀ 𝑤 ∈ P ( 𝑤 <P 𝑣 → ∃ 𝑢 ∈ 𝐵 𝑤 <P 𝑢 ) ) → ( ( 𝐶 +R -1R ) <R 𝑦 → ( 𝑦 ∈ R → ( 𝑦 <R ( 𝐶 +R [ 〈 𝑣 , 1P 〉 ] ~R ) → ∃ 𝑧 ∈ 𝐴 𝑦 <R 𝑧 ) ) ) ) |
117 |
34 35
|
sotri2 |
⊢ ( ( 𝑦 ∈ R ∧ ¬ ( 𝐶 +R -1R ) <R 𝑦 ∧ ( 𝐶 +R -1R ) <R 𝐶 ) → 𝑦 <R 𝐶 ) |
118 |
33 117
|
mp3an3 |
⊢ ( ( 𝑦 ∈ R ∧ ¬ ( 𝐶 +R -1R ) <R 𝑦 ) → 𝑦 <R 𝐶 ) |
119 |
|
breq2 |
⊢ ( 𝑧 = 𝐶 → ( 𝑦 <R 𝑧 ↔ 𝑦 <R 𝐶 ) ) |
120 |
119
|
rspcev |
⊢ ( ( 𝐶 ∈ 𝐴 ∧ 𝑦 <R 𝐶 ) → ∃ 𝑧 ∈ 𝐴 𝑦 <R 𝑧 ) |
121 |
120
|
ex |
⊢ ( 𝐶 ∈ 𝐴 → ( 𝑦 <R 𝐶 → ∃ 𝑧 ∈ 𝐴 𝑦 <R 𝑧 ) ) |
122 |
121
|
a1dd |
⊢ ( 𝐶 ∈ 𝐴 → ( 𝑦 <R 𝐶 → ( 𝑦 <R ( 𝐶 +R [ 〈 𝑣 , 1P 〉 ] ~R ) → ∃ 𝑧 ∈ 𝐴 𝑦 <R 𝑧 ) ) ) |
123 |
118 122
|
syl5 |
⊢ ( 𝐶 ∈ 𝐴 → ( ( 𝑦 ∈ R ∧ ¬ ( 𝐶 +R -1R ) <R 𝑦 ) → ( 𝑦 <R ( 𝐶 +R [ 〈 𝑣 , 1P 〉 ] ~R ) → ∃ 𝑧 ∈ 𝐴 𝑦 <R 𝑧 ) ) ) |
124 |
123
|
expcomd |
⊢ ( 𝐶 ∈ 𝐴 → ( ¬ ( 𝐶 +R -1R ) <R 𝑦 → ( 𝑦 ∈ R → ( 𝑦 <R ( 𝐶 +R [ 〈 𝑣 , 1P 〉 ] ~R ) → ∃ 𝑧 ∈ 𝐴 𝑦 <R 𝑧 ) ) ) ) |
125 |
124
|
ad2antrr |
⊢ ( ( ( 𝐶 ∈ 𝐴 ∧ 𝑣 ∈ P ) ∧ ∀ 𝑤 ∈ P ( 𝑤 <P 𝑣 → ∃ 𝑢 ∈ 𝐵 𝑤 <P 𝑢 ) ) → ( ¬ ( 𝐶 +R -1R ) <R 𝑦 → ( 𝑦 ∈ R → ( 𝑦 <R ( 𝐶 +R [ 〈 𝑣 , 1P 〉 ] ~R ) → ∃ 𝑧 ∈ 𝐴 𝑦 <R 𝑧 ) ) ) ) |
126 |
116 125
|
pm2.61d |
⊢ ( ( ( 𝐶 ∈ 𝐴 ∧ 𝑣 ∈ P ) ∧ ∀ 𝑤 ∈ P ( 𝑤 <P 𝑣 → ∃ 𝑢 ∈ 𝐵 𝑤 <P 𝑢 ) ) → ( 𝑦 ∈ R → ( 𝑦 <R ( 𝐶 +R [ 〈 𝑣 , 1P 〉 ] ~R ) → ∃ 𝑧 ∈ 𝐴 𝑦 <R 𝑧 ) ) ) |
127 |
126
|
ralrimiv |
⊢ ( ( ( 𝐶 ∈ 𝐴 ∧ 𝑣 ∈ P ) ∧ ∀ 𝑤 ∈ P ( 𝑤 <P 𝑣 → ∃ 𝑢 ∈ 𝐵 𝑤 <P 𝑢 ) ) → ∀ 𝑦 ∈ R ( 𝑦 <R ( 𝐶 +R [ 〈 𝑣 , 1P 〉 ] ~R ) → ∃ 𝑧 ∈ 𝐴 𝑦 <R 𝑧 ) ) |
128 |
127
|
ex |
⊢ ( ( 𝐶 ∈ 𝐴 ∧ 𝑣 ∈ P ) → ( ∀ 𝑤 ∈ P ( 𝑤 <P 𝑣 → ∃ 𝑢 ∈ 𝐵 𝑤 <P 𝑢 ) → ∀ 𝑦 ∈ R ( 𝑦 <R ( 𝐶 +R [ 〈 𝑣 , 1P 〉 ] ~R ) → ∃ 𝑧 ∈ 𝐴 𝑦 <R 𝑧 ) ) ) |
129 |
128
|
adantlr |
⊢ ( ( ( 𝐶 ∈ 𝐴 ∧ ∃ 𝑥 ∈ R ∀ 𝑦 ∈ 𝐴 𝑦 <R 𝑥 ) ∧ 𝑣 ∈ P ) → ( ∀ 𝑤 ∈ P ( 𝑤 <P 𝑣 → ∃ 𝑢 ∈ 𝐵 𝑤 <P 𝑢 ) → ∀ 𝑦 ∈ R ( 𝑦 <R ( 𝐶 +R [ 〈 𝑣 , 1P 〉 ] ~R ) → ∃ 𝑧 ∈ 𝐴 𝑦 <R 𝑧 ) ) ) |
130 |
89 129
|
anim12d |
⊢ ( ( ( 𝐶 ∈ 𝐴 ∧ ∃ 𝑥 ∈ R ∀ 𝑦 ∈ 𝐴 𝑦 <R 𝑥 ) ∧ 𝑣 ∈ P ) → ( ( ∀ 𝑤 ∈ 𝐵 ¬ 𝑣 <P 𝑤 ∧ ∀ 𝑤 ∈ P ( 𝑤 <P 𝑣 → ∃ 𝑢 ∈ 𝐵 𝑤 <P 𝑢 ) ) → ( ∀ 𝑦 ∈ 𝐴 ¬ ( 𝐶 +R [ 〈 𝑣 , 1P 〉 ] ~R ) <R 𝑦 ∧ ∀ 𝑦 ∈ R ( 𝑦 <R ( 𝐶 +R [ 〈 𝑣 , 1P 〉 ] ~R ) → ∃ 𝑧 ∈ 𝐴 𝑦 <R 𝑧 ) ) ) ) |
131 |
|
breq1 |
⊢ ( 𝑥 = ( 𝐶 +R [ 〈 𝑣 , 1P 〉 ] ~R ) → ( 𝑥 <R 𝑦 ↔ ( 𝐶 +R [ 〈 𝑣 , 1P 〉 ] ~R ) <R 𝑦 ) ) |
132 |
131
|
notbid |
⊢ ( 𝑥 = ( 𝐶 +R [ 〈 𝑣 , 1P 〉 ] ~R ) → ( ¬ 𝑥 <R 𝑦 ↔ ¬ ( 𝐶 +R [ 〈 𝑣 , 1P 〉 ] ~R ) <R 𝑦 ) ) |
133 |
132
|
ralbidv |
⊢ ( 𝑥 = ( 𝐶 +R [ 〈 𝑣 , 1P 〉 ] ~R ) → ( ∀ 𝑦 ∈ 𝐴 ¬ 𝑥 <R 𝑦 ↔ ∀ 𝑦 ∈ 𝐴 ¬ ( 𝐶 +R [ 〈 𝑣 , 1P 〉 ] ~R ) <R 𝑦 ) ) |
134 |
|
breq2 |
⊢ ( 𝑥 = ( 𝐶 +R [ 〈 𝑣 , 1P 〉 ] ~R ) → ( 𝑦 <R 𝑥 ↔ 𝑦 <R ( 𝐶 +R [ 〈 𝑣 , 1P 〉 ] ~R ) ) ) |
135 |
134
|
imbi1d |
⊢ ( 𝑥 = ( 𝐶 +R [ 〈 𝑣 , 1P 〉 ] ~R ) → ( ( 𝑦 <R 𝑥 → ∃ 𝑧 ∈ 𝐴 𝑦 <R 𝑧 ) ↔ ( 𝑦 <R ( 𝐶 +R [ 〈 𝑣 , 1P 〉 ] ~R ) → ∃ 𝑧 ∈ 𝐴 𝑦 <R 𝑧 ) ) ) |
136 |
135
|
ralbidv |
⊢ ( 𝑥 = ( 𝐶 +R [ 〈 𝑣 , 1P 〉 ] ~R ) → ( ∀ 𝑦 ∈ R ( 𝑦 <R 𝑥 → ∃ 𝑧 ∈ 𝐴 𝑦 <R 𝑧 ) ↔ ∀ 𝑦 ∈ R ( 𝑦 <R ( 𝐶 +R [ 〈 𝑣 , 1P 〉 ] ~R ) → ∃ 𝑧 ∈ 𝐴 𝑦 <R 𝑧 ) ) ) |
137 |
133 136
|
anbi12d |
⊢ ( 𝑥 = ( 𝐶 +R [ 〈 𝑣 , 1P 〉 ] ~R ) → ( ( ∀ 𝑦 ∈ 𝐴 ¬ 𝑥 <R 𝑦 ∧ ∀ 𝑦 ∈ R ( 𝑦 <R 𝑥 → ∃ 𝑧 ∈ 𝐴 𝑦 <R 𝑧 ) ) ↔ ( ∀ 𝑦 ∈ 𝐴 ¬ ( 𝐶 +R [ 〈 𝑣 , 1P 〉 ] ~R ) <R 𝑦 ∧ ∀ 𝑦 ∈ R ( 𝑦 <R ( 𝐶 +R [ 〈 𝑣 , 1P 〉 ] ~R ) → ∃ 𝑧 ∈ 𝐴 𝑦 <R 𝑧 ) ) ) ) |
138 |
137
|
rspcev |
⊢ ( ( ( 𝐶 +R [ 〈 𝑣 , 1P 〉 ] ~R ) ∈ R ∧ ( ∀ 𝑦 ∈ 𝐴 ¬ ( 𝐶 +R [ 〈 𝑣 , 1P 〉 ] ~R ) <R 𝑦 ∧ ∀ 𝑦 ∈ R ( 𝑦 <R ( 𝐶 +R [ 〈 𝑣 , 1P 〉 ] ~R ) → ∃ 𝑧 ∈ 𝐴 𝑦 <R 𝑧 ) ) ) → ∃ 𝑥 ∈ R ( ∀ 𝑦 ∈ 𝐴 ¬ 𝑥 <R 𝑦 ∧ ∀ 𝑦 ∈ R ( 𝑦 <R 𝑥 → ∃ 𝑧 ∈ 𝐴 𝑦 <R 𝑧 ) ) ) |
139 |
62 130 138
|
syl6an |
⊢ ( ( ( 𝐶 ∈ 𝐴 ∧ ∃ 𝑥 ∈ R ∀ 𝑦 ∈ 𝐴 𝑦 <R 𝑥 ) ∧ 𝑣 ∈ P ) → ( ( ∀ 𝑤 ∈ 𝐵 ¬ 𝑣 <P 𝑤 ∧ ∀ 𝑤 ∈ P ( 𝑤 <P 𝑣 → ∃ 𝑢 ∈ 𝐵 𝑤 <P 𝑢 ) ) → ∃ 𝑥 ∈ R ( ∀ 𝑦 ∈ 𝐴 ¬ 𝑥 <R 𝑦 ∧ ∀ 𝑦 ∈ R ( 𝑦 <R 𝑥 → ∃ 𝑧 ∈ 𝐴 𝑦 <R 𝑧 ) ) ) ) |
140 |
139
|
rexlimdva |
⊢ ( ( 𝐶 ∈ 𝐴 ∧ ∃ 𝑥 ∈ R ∀ 𝑦 ∈ 𝐴 𝑦 <R 𝑥 ) → ( ∃ 𝑣 ∈ P ( ∀ 𝑤 ∈ 𝐵 ¬ 𝑣 <P 𝑤 ∧ ∀ 𝑤 ∈ P ( 𝑤 <P 𝑣 → ∃ 𝑢 ∈ 𝐵 𝑤 <P 𝑢 ) ) → ∃ 𝑥 ∈ R ( ∀ 𝑦 ∈ 𝐴 ¬ 𝑥 <R 𝑦 ∧ ∀ 𝑦 ∈ R ( 𝑦 <R 𝑥 → ∃ 𝑧 ∈ 𝐴 𝑦 <R 𝑧 ) ) ) ) |
141 |
57 140
|
mpd |
⊢ ( ( 𝐶 ∈ 𝐴 ∧ ∃ 𝑥 ∈ R ∀ 𝑦 ∈ 𝐴 𝑦 <R 𝑥 ) → ∃ 𝑥 ∈ R ( ∀ 𝑦 ∈ 𝐴 ¬ 𝑥 <R 𝑦 ∧ ∀ 𝑦 ∈ R ( 𝑦 <R 𝑥 → ∃ 𝑧 ∈ 𝐴 𝑦 <R 𝑧 ) ) ) |