| Step | 
						Hyp | 
						Ref | 
						Expression | 
					
						
							| 1 | 
							
								
							 | 
							supssd.0 | 
							⊢ ( 𝜑  →  𝑅  Or  𝐴 )  | 
						
						
							| 2 | 
							
								
							 | 
							supssd.1 | 
							⊢ ( 𝜑  →  𝐵  ⊆  𝐶 )  | 
						
						
							| 3 | 
							
								
							 | 
							supssd.2 | 
							⊢ ( 𝜑  →  𝐶  ⊆  𝐴 )  | 
						
						
							| 4 | 
							
								
							 | 
							supssd.3 | 
							⊢ ( 𝜑  →  ∃ 𝑥  ∈  𝐴 ( ∀ 𝑦  ∈  𝐵 ¬  𝑥 𝑅 𝑦  ∧  ∀ 𝑦  ∈  𝐴 ( 𝑦 𝑅 𝑥  →  ∃ 𝑧  ∈  𝐵 𝑦 𝑅 𝑧 ) ) )  | 
						
						
							| 5 | 
							
								
							 | 
							supssd.4 | 
							⊢ ( 𝜑  →  ∃ 𝑥  ∈  𝐴 ( ∀ 𝑦  ∈  𝐶 ¬  𝑥 𝑅 𝑦  ∧  ∀ 𝑦  ∈  𝐴 ( 𝑦 𝑅 𝑥  →  ∃ 𝑧  ∈  𝐶 𝑦 𝑅 𝑧 ) ) )  | 
						
						
							| 6 | 
							
								1 5
							 | 
							supcl | 
							⊢ ( 𝜑  →  sup ( 𝐶 ,  𝐴 ,  𝑅 )  ∈  𝐴 )  | 
						
						
							| 7 | 
							
								2
							 | 
							sseld | 
							⊢ ( 𝜑  →  ( 𝑧  ∈  𝐵  →  𝑧  ∈  𝐶 ) )  | 
						
						
							| 8 | 
							
								1 5
							 | 
							supub | 
							⊢ ( 𝜑  →  ( 𝑧  ∈  𝐶  →  ¬  sup ( 𝐶 ,  𝐴 ,  𝑅 ) 𝑅 𝑧 ) )  | 
						
						
							| 9 | 
							
								7 8
							 | 
							syld | 
							⊢ ( 𝜑  →  ( 𝑧  ∈  𝐵  →  ¬  sup ( 𝐶 ,  𝐴 ,  𝑅 ) 𝑅 𝑧 ) )  | 
						
						
							| 10 | 
							
								9
							 | 
							ralrimiv | 
							⊢ ( 𝜑  →  ∀ 𝑧  ∈  𝐵 ¬  sup ( 𝐶 ,  𝐴 ,  𝑅 ) 𝑅 𝑧 )  | 
						
						
							| 11 | 
							
								1 4
							 | 
							supnub | 
							⊢ ( 𝜑  →  ( ( sup ( 𝐶 ,  𝐴 ,  𝑅 )  ∈  𝐴  ∧  ∀ 𝑧  ∈  𝐵 ¬  sup ( 𝐶 ,  𝐴 ,  𝑅 ) 𝑅 𝑧 )  →  ¬  sup ( 𝐶 ,  𝐴 ,  𝑅 ) 𝑅 sup ( 𝐵 ,  𝐴 ,  𝑅 ) ) )  | 
						
						
							| 12 | 
							
								6 10 11
							 | 
							mp2and | 
							⊢ ( 𝜑  →  ¬  sup ( 𝐶 ,  𝐴 ,  𝑅 ) 𝑅 sup ( 𝐵 ,  𝐴 ,  𝑅 ) )  |