| Step | 
						Hyp | 
						Ref | 
						Expression | 
					
						
							| 1 | 
							
								
							 | 
							supsubc.a1 | 
							⊢ ( 𝜑  →  𝐴  ⊆  ℝ )  | 
						
						
							| 2 | 
							
								
							 | 
							supsubc.a2 | 
							⊢ ( 𝜑  →  𝐴  ≠  ∅ )  | 
						
						
							| 3 | 
							
								
							 | 
							supsubc.a3 | 
							⊢ ( 𝜑  →  ∃ 𝑥  ∈  ℝ ∀ 𝑦  ∈  𝐴 𝑦  ≤  𝑥 )  | 
						
						
							| 4 | 
							
								
							 | 
							supsubc.b | 
							⊢ ( 𝜑  →  𝐵  ∈  ℝ )  | 
						
						
							| 5 | 
							
								
							 | 
							supsubc.c | 
							⊢ 𝐶  =  { 𝑧  ∣  ∃ 𝑣  ∈  𝐴 𝑧  =  ( 𝑣  −  𝐵 ) }  | 
						
						
							| 6 | 
							
								5
							 | 
							a1i | 
							⊢ ( 𝜑  →  𝐶  =  { 𝑧  ∣  ∃ 𝑣  ∈  𝐴 𝑧  =  ( 𝑣  −  𝐵 ) } )  | 
						
						
							| 7 | 
							
								1
							 | 
							sselda | 
							⊢ ( ( 𝜑  ∧  𝑣  ∈  𝐴 )  →  𝑣  ∈  ℝ )  | 
						
						
							| 8 | 
							
								7
							 | 
							recnd | 
							⊢ ( ( 𝜑  ∧  𝑣  ∈  𝐴 )  →  𝑣  ∈  ℂ )  | 
						
						
							| 9 | 
							
								4
							 | 
							recnd | 
							⊢ ( 𝜑  →  𝐵  ∈  ℂ )  | 
						
						
							| 10 | 
							
								9
							 | 
							adantr | 
							⊢ ( ( 𝜑  ∧  𝑣  ∈  𝐴 )  →  𝐵  ∈  ℂ )  | 
						
						
							| 11 | 
							
								8 10
							 | 
							negsubd | 
							⊢ ( ( 𝜑  ∧  𝑣  ∈  𝐴 )  →  ( 𝑣  +  - 𝐵 )  =  ( 𝑣  −  𝐵 ) )  | 
						
						
							| 12 | 
							
								11
							 | 
							eqcomd | 
							⊢ ( ( 𝜑  ∧  𝑣  ∈  𝐴 )  →  ( 𝑣  −  𝐵 )  =  ( 𝑣  +  - 𝐵 ) )  | 
						
						
							| 13 | 
							
								12
							 | 
							eqeq2d | 
							⊢ ( ( 𝜑  ∧  𝑣  ∈  𝐴 )  →  ( 𝑧  =  ( 𝑣  −  𝐵 )  ↔  𝑧  =  ( 𝑣  +  - 𝐵 ) ) )  | 
						
						
							| 14 | 
							
								13
							 | 
							rexbidva | 
							⊢ ( 𝜑  →  ( ∃ 𝑣  ∈  𝐴 𝑧  =  ( 𝑣  −  𝐵 )  ↔  ∃ 𝑣  ∈  𝐴 𝑧  =  ( 𝑣  +  - 𝐵 ) ) )  | 
						
						
							| 15 | 
							
								14
							 | 
							abbidv | 
							⊢ ( 𝜑  →  { 𝑧  ∣  ∃ 𝑣  ∈  𝐴 𝑧  =  ( 𝑣  −  𝐵 ) }  =  { 𝑧  ∣  ∃ 𝑣  ∈  𝐴 𝑧  =  ( 𝑣  +  - 𝐵 ) } )  | 
						
						
							| 16 | 
							
								
							 | 
							eqidd | 
							⊢ ( 𝜑  →  { 𝑧  ∣  ∃ 𝑣  ∈  𝐴 𝑧  =  ( 𝑣  +  - 𝐵 ) }  =  { 𝑧  ∣  ∃ 𝑣  ∈  𝐴 𝑧  =  ( 𝑣  +  - 𝐵 ) } )  | 
						
						
							| 17 | 
							
								6 15 16
							 | 
							3eqtrd | 
							⊢ ( 𝜑  →  𝐶  =  { 𝑧  ∣  ∃ 𝑣  ∈  𝐴 𝑧  =  ( 𝑣  +  - 𝐵 ) } )  | 
						
						
							| 18 | 
							
								17
							 | 
							supeq1d | 
							⊢ ( 𝜑  →  sup ( 𝐶 ,  ℝ ,   <  )  =  sup ( { 𝑧  ∣  ∃ 𝑣  ∈  𝐴 𝑧  =  ( 𝑣  +  - 𝐵 ) } ,  ℝ ,   <  ) )  | 
						
						
							| 19 | 
							
								4
							 | 
							renegcld | 
							⊢ ( 𝜑  →  - 𝐵  ∈  ℝ )  | 
						
						
							| 20 | 
							
								
							 | 
							eqid | 
							⊢ { 𝑧  ∣  ∃ 𝑣  ∈  𝐴 𝑧  =  ( 𝑣  +  - 𝐵 ) }  =  { 𝑧  ∣  ∃ 𝑣  ∈  𝐴 𝑧  =  ( 𝑣  +  - 𝐵 ) }  | 
						
						
							| 21 | 
							
								1 2 3 19 20
							 | 
							supaddc | 
							⊢ ( 𝜑  →  ( sup ( 𝐴 ,  ℝ ,   <  )  +  - 𝐵 )  =  sup ( { 𝑧  ∣  ∃ 𝑣  ∈  𝐴 𝑧  =  ( 𝑣  +  - 𝐵 ) } ,  ℝ ,   <  ) )  | 
						
						
							| 22 | 
							
								21
							 | 
							eqcomd | 
							⊢ ( 𝜑  →  sup ( { 𝑧  ∣  ∃ 𝑣  ∈  𝐴 𝑧  =  ( 𝑣  +  - 𝐵 ) } ,  ℝ ,   <  )  =  ( sup ( 𝐴 ,  ℝ ,   <  )  +  - 𝐵 ) )  | 
						
						
							| 23 | 
							
								
							 | 
							suprcl | 
							⊢ ( ( 𝐴  ⊆  ℝ  ∧  𝐴  ≠  ∅  ∧  ∃ 𝑥  ∈  ℝ ∀ 𝑦  ∈  𝐴 𝑦  ≤  𝑥 )  →  sup ( 𝐴 ,  ℝ ,   <  )  ∈  ℝ )  | 
						
						
							| 24 | 
							
								1 2 3 23
							 | 
							syl3anc | 
							⊢ ( 𝜑  →  sup ( 𝐴 ,  ℝ ,   <  )  ∈  ℝ )  | 
						
						
							| 25 | 
							
								24
							 | 
							recnd | 
							⊢ ( 𝜑  →  sup ( 𝐴 ,  ℝ ,   <  )  ∈  ℂ )  | 
						
						
							| 26 | 
							
								25 9
							 | 
							negsubd | 
							⊢ ( 𝜑  →  ( sup ( 𝐴 ,  ℝ ,   <  )  +  - 𝐵 )  =  ( sup ( 𝐴 ,  ℝ ,   <  )  −  𝐵 ) )  | 
						
						
							| 27 | 
							
								18 22 26
							 | 
							3eqtrrd | 
							⊢ ( 𝜑  →  ( sup ( 𝐴 ,  ℝ ,   <  )  −  𝐵 )  =  sup ( 𝐶 ,  ℝ ,   <  ) )  |