Step |
Hyp |
Ref |
Expression |
1 |
|
simplr |
⊢ ( ( ( 𝐴 ⊆ ℝ* ∧ 𝐵 ∈ ℝ* ) ∧ ( ∀ 𝑥 ∈ 𝐴 ¬ 𝐵 < 𝑥 ∧ ∀ 𝑥 ∈ ℝ ( 𝑥 < 𝐵 → ∃ 𝑦 ∈ 𝐴 𝑥 < 𝑦 ) ) ) → 𝐵 ∈ ℝ* ) |
2 |
|
simprl |
⊢ ( ( ( 𝐴 ⊆ ℝ* ∧ 𝐵 ∈ ℝ* ) ∧ ( ∀ 𝑥 ∈ 𝐴 ¬ 𝐵 < 𝑥 ∧ ∀ 𝑥 ∈ ℝ ( 𝑥 < 𝐵 → ∃ 𝑦 ∈ 𝐴 𝑥 < 𝑦 ) ) ) → ∀ 𝑥 ∈ 𝐴 ¬ 𝐵 < 𝑥 ) |
3 |
|
xrub |
⊢ ( ( 𝐴 ⊆ ℝ* ∧ 𝐵 ∈ ℝ* ) → ( ∀ 𝑥 ∈ ℝ ( 𝑥 < 𝐵 → ∃ 𝑦 ∈ 𝐴 𝑥 < 𝑦 ) ↔ ∀ 𝑥 ∈ ℝ* ( 𝑥 < 𝐵 → ∃ 𝑦 ∈ 𝐴 𝑥 < 𝑦 ) ) ) |
4 |
3
|
biimpa |
⊢ ( ( ( 𝐴 ⊆ ℝ* ∧ 𝐵 ∈ ℝ* ) ∧ ∀ 𝑥 ∈ ℝ ( 𝑥 < 𝐵 → ∃ 𝑦 ∈ 𝐴 𝑥 < 𝑦 ) ) → ∀ 𝑥 ∈ ℝ* ( 𝑥 < 𝐵 → ∃ 𝑦 ∈ 𝐴 𝑥 < 𝑦 ) ) |
5 |
4
|
adantrl |
⊢ ( ( ( 𝐴 ⊆ ℝ* ∧ 𝐵 ∈ ℝ* ) ∧ ( ∀ 𝑥 ∈ 𝐴 ¬ 𝐵 < 𝑥 ∧ ∀ 𝑥 ∈ ℝ ( 𝑥 < 𝐵 → ∃ 𝑦 ∈ 𝐴 𝑥 < 𝑦 ) ) ) → ∀ 𝑥 ∈ ℝ* ( 𝑥 < 𝐵 → ∃ 𝑦 ∈ 𝐴 𝑥 < 𝑦 ) ) |
6 |
|
xrltso |
⊢ < Or ℝ* |
7 |
6
|
a1i |
⊢ ( ⊤ → < Or ℝ* ) |
8 |
7
|
eqsup |
⊢ ( ⊤ → ( ( 𝐵 ∈ ℝ* ∧ ∀ 𝑥 ∈ 𝐴 ¬ 𝐵 < 𝑥 ∧ ∀ 𝑥 ∈ ℝ* ( 𝑥 < 𝐵 → ∃ 𝑦 ∈ 𝐴 𝑥 < 𝑦 ) ) → sup ( 𝐴 , ℝ* , < ) = 𝐵 ) ) |
9 |
8
|
mptru |
⊢ ( ( 𝐵 ∈ ℝ* ∧ ∀ 𝑥 ∈ 𝐴 ¬ 𝐵 < 𝑥 ∧ ∀ 𝑥 ∈ ℝ* ( 𝑥 < 𝐵 → ∃ 𝑦 ∈ 𝐴 𝑥 < 𝑦 ) ) → sup ( 𝐴 , ℝ* , < ) = 𝐵 ) |
10 |
1 2 5 9
|
syl3anc |
⊢ ( ( ( 𝐴 ⊆ ℝ* ∧ 𝐵 ∈ ℝ* ) ∧ ( ∀ 𝑥 ∈ 𝐴 ¬ 𝐵 < 𝑥 ∧ ∀ 𝑥 ∈ ℝ ( 𝑥 < 𝐵 → ∃ 𝑦 ∈ 𝐴 𝑥 < 𝑦 ) ) ) → sup ( 𝐴 , ℝ* , < ) = 𝐵 ) |