| Step | Hyp | Ref | Expression | 
						
							| 1 |  | simplr | ⊢ ( ( ( 𝐴  ⊆  ℝ*  ∧  𝐵  ∈  ℝ* )  ∧  ( ∀ 𝑥  ∈  𝐴 ¬  𝐵  <  𝑥  ∧  ∀ 𝑥  ∈  ℝ ( 𝑥  <  𝐵  →  ∃ 𝑦  ∈  𝐴 𝑥  <  𝑦 ) ) )  →  𝐵  ∈  ℝ* ) | 
						
							| 2 |  | simprl | ⊢ ( ( ( 𝐴  ⊆  ℝ*  ∧  𝐵  ∈  ℝ* )  ∧  ( ∀ 𝑥  ∈  𝐴 ¬  𝐵  <  𝑥  ∧  ∀ 𝑥  ∈  ℝ ( 𝑥  <  𝐵  →  ∃ 𝑦  ∈  𝐴 𝑥  <  𝑦 ) ) )  →  ∀ 𝑥  ∈  𝐴 ¬  𝐵  <  𝑥 ) | 
						
							| 3 |  | xrub | ⊢ ( ( 𝐴  ⊆  ℝ*  ∧  𝐵  ∈  ℝ* )  →  ( ∀ 𝑥  ∈  ℝ ( 𝑥  <  𝐵  →  ∃ 𝑦  ∈  𝐴 𝑥  <  𝑦 )  ↔  ∀ 𝑥  ∈  ℝ* ( 𝑥  <  𝐵  →  ∃ 𝑦  ∈  𝐴 𝑥  <  𝑦 ) ) ) | 
						
							| 4 | 3 | biimpa | ⊢ ( ( ( 𝐴  ⊆  ℝ*  ∧  𝐵  ∈  ℝ* )  ∧  ∀ 𝑥  ∈  ℝ ( 𝑥  <  𝐵  →  ∃ 𝑦  ∈  𝐴 𝑥  <  𝑦 ) )  →  ∀ 𝑥  ∈  ℝ* ( 𝑥  <  𝐵  →  ∃ 𝑦  ∈  𝐴 𝑥  <  𝑦 ) ) | 
						
							| 5 | 4 | adantrl | ⊢ ( ( ( 𝐴  ⊆  ℝ*  ∧  𝐵  ∈  ℝ* )  ∧  ( ∀ 𝑥  ∈  𝐴 ¬  𝐵  <  𝑥  ∧  ∀ 𝑥  ∈  ℝ ( 𝑥  <  𝐵  →  ∃ 𝑦  ∈  𝐴 𝑥  <  𝑦 ) ) )  →  ∀ 𝑥  ∈  ℝ* ( 𝑥  <  𝐵  →  ∃ 𝑦  ∈  𝐴 𝑥  <  𝑦 ) ) | 
						
							| 6 |  | xrltso | ⊢  <   Or  ℝ* | 
						
							| 7 | 6 | a1i | ⊢ ( ⊤  →   <   Or  ℝ* ) | 
						
							| 8 | 7 | eqsup | ⊢ ( ⊤  →  ( ( 𝐵  ∈  ℝ*  ∧  ∀ 𝑥  ∈  𝐴 ¬  𝐵  <  𝑥  ∧  ∀ 𝑥  ∈  ℝ* ( 𝑥  <  𝐵  →  ∃ 𝑦  ∈  𝐴 𝑥  <  𝑦 ) )  →  sup ( 𝐴 ,  ℝ* ,   <  )  =  𝐵 ) ) | 
						
							| 9 | 8 | mptru | ⊢ ( ( 𝐵  ∈  ℝ*  ∧  ∀ 𝑥  ∈  𝐴 ¬  𝐵  <  𝑥  ∧  ∀ 𝑥  ∈  ℝ* ( 𝑥  <  𝐵  →  ∃ 𝑦  ∈  𝐴 𝑥  <  𝑦 ) )  →  sup ( 𝐴 ,  ℝ* ,   <  )  =  𝐵 ) | 
						
							| 10 | 1 2 5 9 | syl3anc | ⊢ ( ( ( 𝐴  ⊆  ℝ*  ∧  𝐵  ∈  ℝ* )  ∧  ( ∀ 𝑥  ∈  𝐴 ¬  𝐵  <  𝑥  ∧  ∀ 𝑥  ∈  ℝ ( 𝑥  <  𝐵  →  ∃ 𝑦  ∈  𝐴 𝑥  <  𝑦 ) ) )  →  sup ( 𝐴 ,  ℝ* ,   <  )  =  𝐵 ) |