Metamath Proof Explorer


Theorem supxr

Description: The supremum of a set of extended reals. (Contributed by NM, 9-Apr-2006) (Revised by Mario Carneiro, 21-Apr-2015)

Ref Expression
Assertion supxr ( ( ( 𝐴 ⊆ ℝ*𝐵 ∈ ℝ* ) ∧ ( ∀ 𝑥𝐴 ¬ 𝐵 < 𝑥 ∧ ∀ 𝑥 ∈ ℝ ( 𝑥 < 𝐵 → ∃ 𝑦𝐴 𝑥 < 𝑦 ) ) ) → sup ( 𝐴 , ℝ* , < ) = 𝐵 )

Proof

Step Hyp Ref Expression
1 simplr ( ( ( 𝐴 ⊆ ℝ*𝐵 ∈ ℝ* ) ∧ ( ∀ 𝑥𝐴 ¬ 𝐵 < 𝑥 ∧ ∀ 𝑥 ∈ ℝ ( 𝑥 < 𝐵 → ∃ 𝑦𝐴 𝑥 < 𝑦 ) ) ) → 𝐵 ∈ ℝ* )
2 simprl ( ( ( 𝐴 ⊆ ℝ*𝐵 ∈ ℝ* ) ∧ ( ∀ 𝑥𝐴 ¬ 𝐵 < 𝑥 ∧ ∀ 𝑥 ∈ ℝ ( 𝑥 < 𝐵 → ∃ 𝑦𝐴 𝑥 < 𝑦 ) ) ) → ∀ 𝑥𝐴 ¬ 𝐵 < 𝑥 )
3 xrub ( ( 𝐴 ⊆ ℝ*𝐵 ∈ ℝ* ) → ( ∀ 𝑥 ∈ ℝ ( 𝑥 < 𝐵 → ∃ 𝑦𝐴 𝑥 < 𝑦 ) ↔ ∀ 𝑥 ∈ ℝ* ( 𝑥 < 𝐵 → ∃ 𝑦𝐴 𝑥 < 𝑦 ) ) )
4 3 biimpa ( ( ( 𝐴 ⊆ ℝ*𝐵 ∈ ℝ* ) ∧ ∀ 𝑥 ∈ ℝ ( 𝑥 < 𝐵 → ∃ 𝑦𝐴 𝑥 < 𝑦 ) ) → ∀ 𝑥 ∈ ℝ* ( 𝑥 < 𝐵 → ∃ 𝑦𝐴 𝑥 < 𝑦 ) )
5 4 adantrl ( ( ( 𝐴 ⊆ ℝ*𝐵 ∈ ℝ* ) ∧ ( ∀ 𝑥𝐴 ¬ 𝐵 < 𝑥 ∧ ∀ 𝑥 ∈ ℝ ( 𝑥 < 𝐵 → ∃ 𝑦𝐴 𝑥 < 𝑦 ) ) ) → ∀ 𝑥 ∈ ℝ* ( 𝑥 < 𝐵 → ∃ 𝑦𝐴 𝑥 < 𝑦 ) )
6 xrltso < Or ℝ*
7 6 a1i ( ⊤ → < Or ℝ* )
8 7 eqsup ( ⊤ → ( ( 𝐵 ∈ ℝ* ∧ ∀ 𝑥𝐴 ¬ 𝐵 < 𝑥 ∧ ∀ 𝑥 ∈ ℝ* ( 𝑥 < 𝐵 → ∃ 𝑦𝐴 𝑥 < 𝑦 ) ) → sup ( 𝐴 , ℝ* , < ) = 𝐵 ) )
9 8 mptru ( ( 𝐵 ∈ ℝ* ∧ ∀ 𝑥𝐴 ¬ 𝐵 < 𝑥 ∧ ∀ 𝑥 ∈ ℝ* ( 𝑥 < 𝐵 → ∃ 𝑦𝐴 𝑥 < 𝑦 ) ) → sup ( 𝐴 , ℝ* , < ) = 𝐵 )
10 1 2 5 9 syl3anc ( ( ( 𝐴 ⊆ ℝ*𝐵 ∈ ℝ* ) ∧ ( ∀ 𝑥𝐴 ¬ 𝐵 < 𝑥 ∧ ∀ 𝑥 ∈ ℝ ( 𝑥 < 𝐵 → ∃ 𝑦𝐴 𝑥 < 𝑦 ) ) ) → sup ( 𝐴 , ℝ* , < ) = 𝐵 )