Step |
Hyp |
Ref |
Expression |
1 |
|
ssel2 |
⊢ ( ( 𝐴 ⊆ ℝ* ∧ 𝑥 ∈ 𝐴 ) → 𝑥 ∈ ℝ* ) |
2 |
|
xrlenlt |
⊢ ( ( 𝑥 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ) → ( 𝑥 ≤ 𝐵 ↔ ¬ 𝐵 < 𝑥 ) ) |
3 |
1 2
|
sylan |
⊢ ( ( ( 𝐴 ⊆ ℝ* ∧ 𝑥 ∈ 𝐴 ) ∧ 𝐵 ∈ ℝ* ) → ( 𝑥 ≤ 𝐵 ↔ ¬ 𝐵 < 𝑥 ) ) |
4 |
3
|
an32s |
⊢ ( ( ( 𝐴 ⊆ ℝ* ∧ 𝐵 ∈ ℝ* ) ∧ 𝑥 ∈ 𝐴 ) → ( 𝑥 ≤ 𝐵 ↔ ¬ 𝐵 < 𝑥 ) ) |
5 |
4
|
ralbidva |
⊢ ( ( 𝐴 ⊆ ℝ* ∧ 𝐵 ∈ ℝ* ) → ( ∀ 𝑥 ∈ 𝐴 𝑥 ≤ 𝐵 ↔ ∀ 𝑥 ∈ 𝐴 ¬ 𝐵 < 𝑥 ) ) |
6 |
5
|
anbi1d |
⊢ ( ( 𝐴 ⊆ ℝ* ∧ 𝐵 ∈ ℝ* ) → ( ( ∀ 𝑥 ∈ 𝐴 𝑥 ≤ 𝐵 ∧ ∀ 𝑥 ∈ ℝ ( 𝑥 < 𝐵 → ∃ 𝑦 ∈ 𝐴 𝑥 < 𝑦 ) ) ↔ ( ∀ 𝑥 ∈ 𝐴 ¬ 𝐵 < 𝑥 ∧ ∀ 𝑥 ∈ ℝ ( 𝑥 < 𝐵 → ∃ 𝑦 ∈ 𝐴 𝑥 < 𝑦 ) ) ) ) |
7 |
6
|
biimpa |
⊢ ( ( ( 𝐴 ⊆ ℝ* ∧ 𝐵 ∈ ℝ* ) ∧ ( ∀ 𝑥 ∈ 𝐴 𝑥 ≤ 𝐵 ∧ ∀ 𝑥 ∈ ℝ ( 𝑥 < 𝐵 → ∃ 𝑦 ∈ 𝐴 𝑥 < 𝑦 ) ) ) → ( ∀ 𝑥 ∈ 𝐴 ¬ 𝐵 < 𝑥 ∧ ∀ 𝑥 ∈ ℝ ( 𝑥 < 𝐵 → ∃ 𝑦 ∈ 𝐴 𝑥 < 𝑦 ) ) ) |
8 |
|
supxr |
⊢ ( ( ( 𝐴 ⊆ ℝ* ∧ 𝐵 ∈ ℝ* ) ∧ ( ∀ 𝑥 ∈ 𝐴 ¬ 𝐵 < 𝑥 ∧ ∀ 𝑥 ∈ ℝ ( 𝑥 < 𝐵 → ∃ 𝑦 ∈ 𝐴 𝑥 < 𝑦 ) ) ) → sup ( 𝐴 , ℝ* , < ) = 𝐵 ) |
9 |
7 8
|
syldan |
⊢ ( ( ( 𝐴 ⊆ ℝ* ∧ 𝐵 ∈ ℝ* ) ∧ ( ∀ 𝑥 ∈ 𝐴 𝑥 ≤ 𝐵 ∧ ∀ 𝑥 ∈ ℝ ( 𝑥 < 𝐵 → ∃ 𝑦 ∈ 𝐴 𝑥 < 𝑦 ) ) ) → sup ( 𝐴 , ℝ* , < ) = 𝐵 ) |