| Step |
Hyp |
Ref |
Expression |
| 1 |
|
ressxr |
⊢ ℝ ⊆ ℝ* |
| 2 |
|
sstr |
⊢ ( ( 𝐴 ⊆ ℝ ∧ ℝ ⊆ ℝ* ) → 𝐴 ⊆ ℝ* ) |
| 3 |
1 2
|
mpan2 |
⊢ ( 𝐴 ⊆ ℝ → 𝐴 ⊆ ℝ* ) |
| 4 |
|
supxrcl |
⊢ ( 𝐴 ⊆ ℝ* → sup ( 𝐴 , ℝ* , < ) ∈ ℝ* ) |
| 5 |
|
pnfxr |
⊢ +∞ ∈ ℝ* |
| 6 |
|
xrltne |
⊢ ( ( sup ( 𝐴 , ℝ* , < ) ∈ ℝ* ∧ +∞ ∈ ℝ* ∧ sup ( 𝐴 , ℝ* , < ) < +∞ ) → +∞ ≠ sup ( 𝐴 , ℝ* , < ) ) |
| 7 |
5 6
|
mp3an2 |
⊢ ( ( sup ( 𝐴 , ℝ* , < ) ∈ ℝ* ∧ sup ( 𝐴 , ℝ* , < ) < +∞ ) → +∞ ≠ sup ( 𝐴 , ℝ* , < ) ) |
| 8 |
7
|
necomd |
⊢ ( ( sup ( 𝐴 , ℝ* , < ) ∈ ℝ* ∧ sup ( 𝐴 , ℝ* , < ) < +∞ ) → sup ( 𝐴 , ℝ* , < ) ≠ +∞ ) |
| 9 |
8
|
ex |
⊢ ( sup ( 𝐴 , ℝ* , < ) ∈ ℝ* → ( sup ( 𝐴 , ℝ* , < ) < +∞ → sup ( 𝐴 , ℝ* , < ) ≠ +∞ ) ) |
| 10 |
4 9
|
syl |
⊢ ( 𝐴 ⊆ ℝ* → ( sup ( 𝐴 , ℝ* , < ) < +∞ → sup ( 𝐴 , ℝ* , < ) ≠ +∞ ) ) |
| 11 |
|
supxrunb2 |
⊢ ( 𝐴 ⊆ ℝ* → ( ∀ 𝑥 ∈ ℝ ∃ 𝑦 ∈ 𝐴 𝑥 < 𝑦 ↔ sup ( 𝐴 , ℝ* , < ) = +∞ ) ) |
| 12 |
|
ssel2 |
⊢ ( ( 𝐴 ⊆ ℝ* ∧ 𝑦 ∈ 𝐴 ) → 𝑦 ∈ ℝ* ) |
| 13 |
12
|
adantlr |
⊢ ( ( ( 𝐴 ⊆ ℝ* ∧ 𝑥 ∈ ℝ ) ∧ 𝑦 ∈ 𝐴 ) → 𝑦 ∈ ℝ* ) |
| 14 |
|
rexr |
⊢ ( 𝑥 ∈ ℝ → 𝑥 ∈ ℝ* ) |
| 15 |
14
|
ad2antlr |
⊢ ( ( ( 𝐴 ⊆ ℝ* ∧ 𝑥 ∈ ℝ ) ∧ 𝑦 ∈ 𝐴 ) → 𝑥 ∈ ℝ* ) |
| 16 |
|
xrlenlt |
⊢ ( ( 𝑦 ∈ ℝ* ∧ 𝑥 ∈ ℝ* ) → ( 𝑦 ≤ 𝑥 ↔ ¬ 𝑥 < 𝑦 ) ) |
| 17 |
16
|
con2bid |
⊢ ( ( 𝑦 ∈ ℝ* ∧ 𝑥 ∈ ℝ* ) → ( 𝑥 < 𝑦 ↔ ¬ 𝑦 ≤ 𝑥 ) ) |
| 18 |
13 15 17
|
syl2anc |
⊢ ( ( ( 𝐴 ⊆ ℝ* ∧ 𝑥 ∈ ℝ ) ∧ 𝑦 ∈ 𝐴 ) → ( 𝑥 < 𝑦 ↔ ¬ 𝑦 ≤ 𝑥 ) ) |
| 19 |
18
|
rexbidva |
⊢ ( ( 𝐴 ⊆ ℝ* ∧ 𝑥 ∈ ℝ ) → ( ∃ 𝑦 ∈ 𝐴 𝑥 < 𝑦 ↔ ∃ 𝑦 ∈ 𝐴 ¬ 𝑦 ≤ 𝑥 ) ) |
| 20 |
|
rexnal |
⊢ ( ∃ 𝑦 ∈ 𝐴 ¬ 𝑦 ≤ 𝑥 ↔ ¬ ∀ 𝑦 ∈ 𝐴 𝑦 ≤ 𝑥 ) |
| 21 |
19 20
|
bitrdi |
⊢ ( ( 𝐴 ⊆ ℝ* ∧ 𝑥 ∈ ℝ ) → ( ∃ 𝑦 ∈ 𝐴 𝑥 < 𝑦 ↔ ¬ ∀ 𝑦 ∈ 𝐴 𝑦 ≤ 𝑥 ) ) |
| 22 |
21
|
ralbidva |
⊢ ( 𝐴 ⊆ ℝ* → ( ∀ 𝑥 ∈ ℝ ∃ 𝑦 ∈ 𝐴 𝑥 < 𝑦 ↔ ∀ 𝑥 ∈ ℝ ¬ ∀ 𝑦 ∈ 𝐴 𝑦 ≤ 𝑥 ) ) |
| 23 |
11 22
|
bitr3d |
⊢ ( 𝐴 ⊆ ℝ* → ( sup ( 𝐴 , ℝ* , < ) = +∞ ↔ ∀ 𝑥 ∈ ℝ ¬ ∀ 𝑦 ∈ 𝐴 𝑦 ≤ 𝑥 ) ) |
| 24 |
|
ralnex |
⊢ ( ∀ 𝑥 ∈ ℝ ¬ ∀ 𝑦 ∈ 𝐴 𝑦 ≤ 𝑥 ↔ ¬ ∃ 𝑥 ∈ ℝ ∀ 𝑦 ∈ 𝐴 𝑦 ≤ 𝑥 ) |
| 25 |
23 24
|
bitrdi |
⊢ ( 𝐴 ⊆ ℝ* → ( sup ( 𝐴 , ℝ* , < ) = +∞ ↔ ¬ ∃ 𝑥 ∈ ℝ ∀ 𝑦 ∈ 𝐴 𝑦 ≤ 𝑥 ) ) |
| 26 |
25
|
necon2abid |
⊢ ( 𝐴 ⊆ ℝ* → ( ∃ 𝑥 ∈ ℝ ∀ 𝑦 ∈ 𝐴 𝑦 ≤ 𝑥 ↔ sup ( 𝐴 , ℝ* , < ) ≠ +∞ ) ) |
| 27 |
10 26
|
sylibrd |
⊢ ( 𝐴 ⊆ ℝ* → ( sup ( 𝐴 , ℝ* , < ) < +∞ → ∃ 𝑥 ∈ ℝ ∀ 𝑦 ∈ 𝐴 𝑦 ≤ 𝑥 ) ) |
| 28 |
27
|
imp |
⊢ ( ( 𝐴 ⊆ ℝ* ∧ sup ( 𝐴 , ℝ* , < ) < +∞ ) → ∃ 𝑥 ∈ ℝ ∀ 𝑦 ∈ 𝐴 𝑦 ≤ 𝑥 ) |
| 29 |
3 28
|
sylan |
⊢ ( ( 𝐴 ⊆ ℝ ∧ sup ( 𝐴 , ℝ* , < ) < +∞ ) → ∃ 𝑥 ∈ ℝ ∀ 𝑦 ∈ 𝐴 𝑦 ≤ 𝑥 ) |
| 30 |
29
|
3adant2 |
⊢ ( ( 𝐴 ⊆ ℝ ∧ 𝐴 ≠ ∅ ∧ sup ( 𝐴 , ℝ* , < ) < +∞ ) → ∃ 𝑥 ∈ ℝ ∀ 𝑦 ∈ 𝐴 𝑦 ≤ 𝑥 ) |
| 31 |
|
supxrre |
⊢ ( ( 𝐴 ⊆ ℝ ∧ 𝐴 ≠ ∅ ∧ ∃ 𝑥 ∈ ℝ ∀ 𝑦 ∈ 𝐴 𝑦 ≤ 𝑥 ) → sup ( 𝐴 , ℝ* , < ) = sup ( 𝐴 , ℝ , < ) ) |
| 32 |
|
suprcl |
⊢ ( ( 𝐴 ⊆ ℝ ∧ 𝐴 ≠ ∅ ∧ ∃ 𝑥 ∈ ℝ ∀ 𝑦 ∈ 𝐴 𝑦 ≤ 𝑥 ) → sup ( 𝐴 , ℝ , < ) ∈ ℝ ) |
| 33 |
31 32
|
eqeltrd |
⊢ ( ( 𝐴 ⊆ ℝ ∧ 𝐴 ≠ ∅ ∧ ∃ 𝑥 ∈ ℝ ∀ 𝑦 ∈ 𝐴 𝑦 ≤ 𝑥 ) → sup ( 𝐴 , ℝ* , < ) ∈ ℝ ) |
| 34 |
30 33
|
syld3an3 |
⊢ ( ( 𝐴 ⊆ ℝ ∧ 𝐴 ≠ ∅ ∧ sup ( 𝐴 , ℝ* , < ) < +∞ ) → sup ( 𝐴 , ℝ* , < ) ∈ ℝ ) |